def precision_score(self, y_true, y_pred, **kwargs):
     nms_flag = kwargs.pop('nms_flag', True)
     if nms_flag:
         bboxes = predict_nms_boxes(y_pred)
     else:
         bboxes = convert_boxes(y_pred)
     gt_bboxes = convert_boxes(y_true)
     score = cal_precision(gt_bboxes, bboxes)
     return score
 def score(self, y_true, y_pred, **kwargs):
     """Compute Recall for a given predicted bboxes"""
     nms_flag = kwargs.pop('nms_flag', True)
     if nms_flag:
         bboxes = predict_nms_boxes(y_pred)
     else:
         bboxes = convert_boxes(y_pred)
     gt_bboxes = convert_boxes(y_true)
     score = cal_recall(gt_bboxes, bboxes)
     return score
nms_flag = True
hp_d = dict()
# hp_d['image_mean'] = image_mean
hp_d['batch_size'] = 16
hp_d['nms_flag'] = nms_flag
""" 3. Build graph, load weights, initialize a session and start test """
# Initialize
graph = tf.get_default_graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

model = ConvNet([IM_SIZE[0], IM_SIZE[1], 3],
                NUM_CLASS,
                anchors,
                grid_size=(IM_SIZE[0] // 32, IM_SIZE[1] // 32))
saver = tf.train.Saver()

sess = tf.Session(graph=graph, config=config)
saver.restore(sess, '/tmp/model.ckpt')
test_y_pred = model.predict(sess, test_set, **hp_d)
""" 4. Draw boxes on image """
draw_dir = os.path.join(test_dir, 'draws')
for idx, (img, y_pred) in enumerate(zip(test_set.images, test_y_pred)):
    draw_path = os.path.join(draw_dir, '{}_test_images.png'.format(idx + 1))
    if nms_flag:
        bboxes = predict_nms_boxes(y_pred)
    else:
        bboxes = convert_boxes(y_pred)
    bboxes = bboxes[np.nonzero(np.any(bboxes > 0, axis=1))]
    boxed_img = draw_pred_boxes(img, bboxes, class_map, score=True)
    cv2.imwrite(draw_path, boxed_img)
Example #4
0
print('Test performance: {}'.format(test_score))
""" 4. Draw boxes on image """
draw_dir = os.path.join(test_dir, 'draws')  # FIXME
im_dir = os.path.join(test_dir, 'images')  # FIXME
im_paths = []
im_paths.extend(glob.glob(os.path.join(im_dir, '*.jpg')))

for idx, (img, y_pred,
          im_path) in enumerate(zip(test_set.images, test_y_pred, im_paths)):

    print("im_path : ", im_path)
    name = im_path.split('\\')[-1]

    print("name : ", name)
    draw_path = os.path.join(draw_dir, name)

    if nms_flag:
        bboxes = predict_nms_boxes(y_pred, conf_thres=0.5, iou_thres=0.5)
    else:
        bboxes = convert_boxes(y_pred)

    bboxes = bboxes[np.nonzero(np.any(bboxes > 0, axis=1))]

    boxed_img = draw_pred_boxes(img, bboxes, class_map)

    # print(draw_path)
    cv2.imwrite(draw_path, boxed_img)
    cv2.imshow("img", img.astype(np.uint8))
    cv2.imshow("output", boxed_img.astype(np.uint8))
    cv2.waitKey(0)