Example #1
0
 def _output_module(self, rnn_outputs, output_matrices, output_biases):
     optimizer_ins = dict()
     with tf.name_scope('output_module'):
         # print('rnn_outputs:', rnn_outputs)
         rnn_output_ndim = len(rnn_outputs[0].get_shape().as_list())
         if rnn_output_ndim == 3:
             concat_dim = 1
         else:
             concat_dim = 0
         num_split = len(rnn_outputs)
         # o = rnn_outputs
         # rnn_outputs = tf.concat(rnn_outputs, concat_dim, name='concatenated_rnn_outputs')
         o = rnn_outputs
         for layer_idx, (matr, bias) in enumerate(zip(output_matrices, output_biases)):
             with tf.name_scope('layer_%s' % layer_idx):
                 # print('hs.shape:', hs.get_shape().as_list())
                 if layer_idx > 0:
                     o = tf.split(hs, num_split, axis=concat_dim, name='split_o_for_optimizer')
                 hs = tf.concat(o, concat_dim, name='united_o')
                 s = custom_matmul(
                         hs, matr, name_scope='first_s')
                 s = tf.split(s, num_split, axis=concat_dim, name='split_s_for_optimizer')
                 optimizer_ins['output_layer_%s' % layer_idx] = dict(
                     o=o,
                     s=s
                 )
                 s = tf.concat(s, concat_dim, name='united_s')
                 hs = custom_add(
                     s,
                     bias,
                     name='res_of_%s_output_layer' % layer_idx)
                 if layer_idx < self._num_output_layers - 1:
                     hs = tf.nn.relu(hs)
     return hs, optimizer_ins
Example #2
0
 def _apply_lstm_layer(self, inp, state, matrix, bias, scope='lstm'):
     with tf.name_scope(scope):
         x = tf.concat([
             tf.nn.dropout(inp, self._optimizer_dropout_keep_prob), state[0]
         ],
                       -1,
                       name='X')
         s = custom_matmul(x, matrix)
         linear_res = custom_add(s, bias, name='linear_res')
         state_dim = tf.shape(state[0])[-1:]
         split_dims = tf.concat([3 * state_dim, state_dim], 0)
         [sigm_arg, tanh_arg] = tf.split(linear_res,
                                         split_dims,
                                         axis=-1,
                                         name='split_to_act_func_args')
         sigm_res = tf.sigmoid(sigm_arg, name='sigm_res')
         transform_vec = tf.tanh(tanh_arg, name='transformation_vector')
         [forget_gate, input_gate, output_gate] = tf.split(sigm_res,
                                                           3,
                                                           axis=-1,
                                                           name='gates')
         new_cell_state = tf.add(forget_gate * state[1],
                                 input_gate * transform_vec,
                                 name='new_cell_state')
         new_hidden_state = tf.multiply(output_gate,
                                        tf.tanh(new_cell_state),
                                        name='new_hidden_state')
     return new_hidden_state, new_cell_state
Example #3
0
    def _apply_res_core(self, vars, opt_ins, rnn_part, target, scope, target_dims):
        if self._res_core_activation_func == 'relu':
            a_func = tf.nn.relu
        elif self._res_core_activation_func == 'tanh':
            a_func = tf.tanh
        else:
            a_func = None
        with tf.name_scope(scope):
            # print("\n(ResNet4Mlp._apply_res_core)rnn_part:", rnn_part)
            # print('(ResNet4Mlp._apply_res_core)opt_ins_united:', opt_ins_united)
            opt_ins_united = tf.concat(opt_ins, -1, name='opt_ins_united')
            ndim = len(opt_ins_united.get_shape().as_list())
            # print('(ResNet4Mlp._apply_res_core)opt_ins:', opt_ins)
            rnn_stack_num = tf.concat(
                [tf.ones([1], dtype=tf.int32),
                 tf.shape(opt_ins_united)[-2:-1],
                 tf.ones([1], dtype=tf.int32)],
                0
            )
            rnn_part = tf.expand_dims(rnn_part, 1)
            rnn_part = tf.tile(rnn_part, rnn_stack_num, name='stacked_rnn_part')
            # print("(ResNet4Mlp._apply_res_core)rnn_part:", rnn_part)
            hs = tf.concat([opt_ins_united, rnn_part], -1, name='opt_ins_with_rnn_part')
            matrices = vars[0]
            biases = vars[1]
            for idx, (m, b) in enumerate(zip(matrices, biases)):
                # print('\n(ResNet4Mlp._apply_res_core)hs:', hs)
                # print('(ResNet4Mlp._apply_res_core)m:', m)
                # with tf.device('/cpu:0'):
                #     hs = tf.Print(
                #         hs, [l2_loss_per_elem(hs)],
                #         message="(ResNetOpt._apply_res_core)(%s)(%s)hs before: " % (scope, idx), summarize=20)


                matmul_res = custom_matmul(hs, m)
                if idx == 0:
                    self._debug_tensors.append(matmul_res)
                hs = a_func(custom_add(matmul_res, b))
                # hs = tf.tanh(custom_add(matmul_res, b))

                # with tf.device('/cpu:0'):
                #     hs = tf.Print(
                #         hs, [l2_loss_per_elem(matmul_res)],
                #         message="(ResNetOpt._apply_res_core)(%s)(%s)matmul_res: " % (scope, idx), summarize=20)
            hs = tf.add(
                hs,
                tf.concat(target + [tf.zeros(tf.shape(rnn_part))], -1, name='res_tensor'),
                name='after_res_conn'
            )
            rnn_part_dim = hs.get_shape().as_list()[-1] - sum(target_dims)
            o, sigma, rnn_part = tf.split(hs, list(target_dims) + [rnn_part_dim], axis=-1, name='o_sigma_and_rnn_part')
            # print("(ResNet4Mlp._apply_res_core)rnn_part:", rnn_part)
            # with tf.device('/cpu:0'):
            #     o = tf.Print(o, [o], message='(ResNetOpt._apply_res_core)(scope=%s)o: ' % scope, summarize=10)
            #     sigma = tf.Print(
            #         sigma, [sigma], message='(ResNetOpt._apply_res_core)(scope=%s)sigma: ' % scope, summarize=10)
            return o, sigma, rnn_part
Example #4
0
 def _apply_core(self, vars, opt_ins, scope, target_dims):
     with tf.name_scope(scope):
         opt_ins_united = tf.concat(opt_ins, -1, name='opt_ins_united')
         hs = opt_ins_united
         matrix = vars[0]
         bias = vars[1]
         matmul_res = custom_matmul(hs, matrix)
         self._debug_tensors.append(matmul_res)
         hs = custom_add(matmul_res, bias)
         o, sigma = tf.split(hs, list(target_dims), axis=-1, name='o_sigma')
         return o, sigma
Example #5
0
    def _embed(inputs, matrix):
        with tf.name_scope('embeddings'):
            inputs_ndims = len(inputs.get_shape().as_list())
            if inputs_ndims == 4:
                unstack_dim = 1
            else:
                unstack_dim = 0
            o = tf.unstack(inputs, axis=unstack_dim, name='o_embedding_layer')
            inputs = tf.stack(o, axis=unstack_dim)
            embeddings = custom_matmul(inputs, matrix, base_ndims=[3, 2])

            unstacked_embeddings = tf.unstack(embeddings, axis=unstack_dim, name='embeddings')
            optimizer_ins = {'embedding_layer': {'o': o,
                                                 's': unstacked_embeddings}}
            return unstacked_embeddings, optimizer_ins
Example #6
0
 def _apply_core(self, vars, opt_ins, scope, target_dims):
     if self._activation_func == 'relu':
         a_func = tf.nn.relu
     elif self._activation_func == 'tanh':
         a_func = tf.tanh
     else:
         a_func = None
     with tf.name_scope(scope):
         opt_ins_united = tf.concat(opt_ins, -1, name='opt_ins_united')
         hs = opt_ins_united
         matrix = vars[0]
         bias = vars[1]
         matmul_res = custom_matmul(hs, matrix)
         self._debug_tensors.append(matmul_res)
         hs = a_func(custom_add(matmul_res, bias))
         o, sigma = tf.split(hs, list(target_dims), axis=-1, name='o_sigma')
         return o, sigma
Example #7
0
 def _lstm_layer(self, inp, state, layer_idx, matr, bias):
     with tf.name_scope('lstm_layer_%s' % layer_idx):
         nn = self._num_nodes[layer_idx]
         x = tf.concat(
             [tf.nn.dropout(
                 inp,
                 self._dropout_keep_prob),
              state[0]],
             -1,
             name='X')
         s = custom_matmul(x, matr)
         linear_res = custom_add(
             s, bias, name='linear_res')
         [sigm_arg, tanh_arg] = tf.split(linear_res, [3 * nn, nn], axis=-1, name='split_to_act_func_args')
         sigm_res = tf.sigmoid(sigm_arg, name='sigm_res')
         transform_vec = tf.tanh(tanh_arg, name='transformation_vector')
         [forget_gate, input_gate, output_gate] = tf.split(sigm_res, 3, axis=-1, name='gates')
         new_cell_state = tf.add(forget_gate * state[1], input_gate * transform_vec, name='new_cell_state')
         new_hidden_state = tf.multiply(output_gate, tf.tanh(new_cell_state), name='new_hidden_state')
     optimizer_ins = {'lstm_layer_%s' % layer_idx: {'o': x, 's': s}}
     return new_hidden_state, [new_hidden_state, new_cell_state], optimizer_ins
 def _mlp(self, inputs, matrices, biases):
     opt_ins = dict()
     inp_shape = inputs.get_shape().as_list()
     inp_shape = [-1 if a is None else a for a in inp_shape]
     ndim = len(inp_shape)
     inputs = tf.reshape(inputs,
                         inp_shape[:ndim - self._input_ndim] +
                         [self._input_size],
                         name='inp_reshaped')
     hs = inputs
     with tf.name_scope('mlp'):
         for idx, (m, b) in enumerate(zip(matrices, biases)):
             layer_name = 'layer_%s' % idx
             opt_ins[layer_name] = dict(o=hs)
             with tf.name_scope(layer_name):
                 preactivate = custom_add(custom_matmul(hs, m), b)
                 if idx < len(matrices) - 1:
                     hs = tf.nn.relu(preactivate)
                 else:
                     hs = preactivate
             opt_ins[layer_name]['s'] = preactivate
     return hs, opt_ins
Example #9
0
 def _apply_res_core(self, vars, opt_ins, scope, target_dims):
     if self._res_core_activation_func == 'relu':
         a_func = tf.nn.relu
     elif self._res_core_activation_func == 'tanh':
         a_func = tf.tanh
     else:
         a_func = None
     with tf.name_scope(scope):
         opt_ins_united = tf.concat(opt_ins, -1, name='opt_ins_united')
         hs = opt_ins_united
         matrices = vars[0]
         biases = vars[1]
         for idx, (m, b) in enumerate(zip(matrices, biases)):
             matmul_res = custom_matmul(hs, m)
             if idx == 0:
                 self._debug_tensors.append(matmul_res)
             hs = a_func(custom_add(matmul_res, b))
         hs = tf.add(hs,
                     tf.concat(opt_ins, -1, name='res_tensor'),
                     name='after_res_conn')
         o, sigma = tf.split(hs, list(target_dims), axis=-1, name='o_sigma')
         return o, sigma
Example #10
0
 def _apply_net(
     self,
     inp,
     state,
     vars,
 ):
     inp, old_shape, stack = self._opt_in_reshaping(inp)
     inp = log_and_sign(inp, P)
     new_state = list()
     for layer_idx, (layer_state, matrix, bias) in enumerate(
             zip(state, vars['lstm_matrices'], vars['lstm_biases'])):
         new_h, new_c = self._apply_lstm_layer(
             inp,
             layer_state,
             matrix,
             bias,
             scope='lstm_layer_%s' % layer_idx,
         )
         new_state.append((new_h, new_c))
         inp = new_h
     with tf.name_scope('linear'):
         linear_res = self._scale * custom_matmul(inp, vars['linear'])
     res = self._reshape_back(linear_res, old_shape, stack)
     return res, new_state