def _add_chi_term_sum( self, optimizer_ins ): for ok, ov in optimizer_ins.items(): if isinstance(ov['o'], list): # with tf.device('/cpu:0'): # self._chi_contribution = tf.Print( # self._chi_contribution, # [self._chi_contribution], # message="\n\n(ChiNoise._add_chi_term_sum)self._chi_contribution:\n" # ) changed = list() for o in ov['o']: noise = self._get_noise(tf.shape(o)) noise = normalize(noise, o) # with tf.device('/cpu:0'): # noise = tf.Print( # noise, # [global_norm([noise])], # message="\n\n(ChiNoise._add_chi_term_sum)noise:\n" # ) # o = tf.Print( # o, # [global_norm([o])], # message="\n\n(ChiNoise._add_chi_term_sum)o:\n" # ) changed.append(o + self._chi_contribution * noise) ov['o'] = changed # ov['o'] = [ # o + self._chi_contribution * self._get_noise(tf.shape(o)) # for o in ov['o'] # ] else: # with tf.device('/cpu:0'): # self._chi_contribution = tf.Print( # self._chi_contribution, # [self._chi_contribution], # message="\n\n(ChiNoise._add_chi_term_sum)self._chi_contribution:\n" # ) noise = self._get_noise(tf.shape(ov['o'])) noise = normalize(noise, ov['o']) # with tf.device('/cpu:0'): # noise = tf.Print( # noise, # [global_norm([noise])], # message="\n\n(ChiNoise._add_chi_term_sum)noise:\n" # ) # ov['o'] = tf.Print( # ov['o'], # # [global_norm([ov['o']])], # message="\n\n(ChiNoise._add_chi_term_sum)ov['o']:\n" # ) ov['o'] = ov['o'] + self._chi_contribution * noise # ov['o'] = ov['o'] + self._chi_contribution * self._get_noise(tf.shape(ov['o'])) return optimizer_ins
def _add_chi_term_sum(self, optimizer_ins): for ok, ov in optimizer_ins.items(): if isinstance(ov['o'], list): ov['o'] = [ o + self._chi_contribution * normalize(theta, o) for o, theta in zip(ov['o'], ov['theta']) ] else: ov['o'] = ov['o'] + self._chi_contribution * normalize( ov['theta'], ov['o']) return optimizer_ins