class SVMTest(unittest.TestCase): def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/lin_training.csv") self.problem.set_label("Name") self.problem.set_model("SVM") self.data = self.problem.data self.model = self.problem.model def tearDown(self): self.problem = None self.data = None def test_fit_stats(self): self.model.fit(None) acc = calculate_acc(self.model.fit_report['output'], self.model.fit_report['target']) self.assertEqual(0.97668, round(acc, 5))
class ModelUtilTest(unittest.TestCase): def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name") self.problem.set_model("NaiveBayes") self.data = self.problem.data def tearDown(self): self.problem = None self.data = None def test_unique_list(self): ulist = unique_list(self.data['Name']) self.assertEqual(set(['Iris-versicolor', 'Iris-setosa']), set(ulist)) def test_get_both_columns(self): num_cols, cat_cols = get_both_columns(self.data, 'Name') self.assertEqual(set(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']), set(num_cols)) self.assertEqual(set(['Dum']), set(cat_cols)) def test_get_mean_std(self): mean, std = get_mean_std(self.data['SepalWidth']) self.assertEqual(3.0940, round(mean, 4)) self.assertEqual(0.4761, round(std, 4)) def test_calculate_prob(self): prob = calculate_prob(10, 2, 3) self.assertEqual(0.0038, round(prob, 4)) def test_nonlin(self): out = nonlin(0.5, False) self.assertEqual(0.62246, round(out, 5)) out = nonlin(0.5, True) self.assertEqual(0.25, round(out, 5)) def test_get_class(self): x = get_class(0.3) self.assertEqual(0, x) def test_get_class_np(self): x = get_class_np(-0.3) self.assertEqual(-1, x)
class NeuralNetworkTest(unittest.TestCase): def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name") self.problem.set_model("NeuralNetwork") self.data = self.problem.data self.model = self.problem.model def tearDown(self): self.problem = None self.data = None def test_fit_stats(self): self.model.fit() acc = calculate_acc(self.model.fit_report['output'], self.model.fit_report['target']) self.assertEqual(1.0, acc) def test_fit_stats_oneIter(self): self.model.num_iter = 1 self.model.fit() acc = calculate_acc(self.model.fit_report['output'], self.model.fit_report['target']) self.assertEqual(.5, acc)
class NaiveBayesTest(unittest.TestCase): def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name") self.problem.set_model("NaiveBayes") self.data = self.problem.data self.model = self.problem.model def tearDown(self): self.problem = None self.data = None def test_prob_stats(self): prob = self.model.prob_hub['Dum']['Iris-versicolor']['a'] self.assertEqual(0.40, round(prob, 2)) prob = self.model.prob_hub['Dum']['Iris-setosa']['b'] self.assertEqual(0.26, round(prob, 2)) def test_mean_std(self): mean, std = get_mean_std(self.data['SepalWidth']) self.assertEqual(3.0940, round(mean, 4)) self.assertEqual(0.4761, round(std, 4))
class ProblemTest(unittest.TestCase): def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name") def tearDown(self): self.problem = None def test_data_read(self): self.assertEqual(len(self.problem.data), 100) def test_problem_reload(self): self.problem.save("test_problem.json", "test_data.json") self.problem.load("test_problem.json", "test_data.json") self.test_problem_descriptions() def test_problem_descriptions(self): self.assertEqual(self.problem.label, "Name") self.assertEqual(self.problem.problem_type, "BinaryClassification") self.assertEqual(self.problem.file_path, "../../../examples/data/iris.csv")
__author__ = 'Jiarui Xu' from learnpy.Problem import Problem # create a problem with training data pro = Problem("BinaryClassification", "./data/iris_training.csv") # set the predictor variable pro.set_label('Name') # save the problem pro.save("problem.json", "data.json") # load the problem pro.load("problem.json", "data.json") pro.set_model("SVM") pro.model.fit(None) # set testing data pro.set_testing("./data/iris_testing.csv") pro.predict() # new problem for 242 demo # create a problem pro2 = Problem("BinaryClassification", "./data/lin_training.csv") # set the predictor variable pro2.set_label('Name')
def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name")
def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/iris.csv") self.problem.set_label("Name") self.problem.set_model("NeuralNetwork") self.data = self.problem.data self.model = self.problem.model
__author__ = 'Jiarui Xu' from learnpy.Problem import Problem # create a problem pro = Problem("BinaryClassification", "./data/iris_training.csv") # set the predictor variable pro.set_label('Name') pro.set_model("NaiveBayes") pro.model.fit(None) pro.set_testing("./data/iris_testing.csv") pro.predict() # new problem # create a problem pro2 = Problem("BinaryClassification", "./data/lin_training.csv") # set the predictor variable pro2.set_label('Name') pro2.set_model("NaiveBayes") pro2.model.fit(None) pro2.set_testing("./data/lin_testing.csv") pro2.predict()
__author__ = 'Jiarui Xu' from learnpy.Problem import Problem # create a problem pro = Problem("BinaryClassification", "./data/iris_training.csv") # set the predictor variable pro.set_label('Name') # use the model neural network pro.set_model("NeuralNetwork", num_iter=1000) # fit the model into the data set above pro.model.fit(None) # set testing data pro.set_testing("./data/iris_testing.csv") pro.predict()
def setUp(self): self.problem = Problem("BinaryClassification", "../../../examples/data/lin_training.csv") self.problem.set_label("Name") self.problem.set_model("SVM") self.data = self.problem.data self.model = self.problem.model