Example #1
0
    def init():
        # Set some SIE lens-model parameters and pack them into an array:
        l_amp = lamp  # Einstein radius
        l_xcen = -2.5  # x position of center
        l_ycen = 2.5  # y position of center
        l_axrat = lax  # minor-to-major axis ratio
        l_pa = lpa  # major-axis position angle (degrees) c.c.w. from x axis
        lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
        lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa])

        # The following lines will plot the un-lensed and lensed images side by side:
        (xg, yg) = ldf.sie_grad(x, y, lpar)
        g_lensimage = ldf.gauss_2d(x - xg, y - yg, gpar)
        lens_source = ldf.gauss_2d(x, y, lenspar)
        lens_source[lens_source < 0.6] = np.nan

        ax2.imshow(g_lensimage, **myargs, clim=(vmin, vmax))
        lens = ax2.imshow(lens_source, **lensargs, clim=(vmin, vmax))
        ax2.set_yticklabels([])
        ax2.set_xticklabels([])
        ax2.set_yticks([])
        ax2.set_xticks([])

        txt = ax2.text(20, 457, 'Lensed Image', size=15, color='w', zorder=5)
        txt.set_path_effects(
            [PathEffects.withStroke(linewidth=5, foreground='k')])
        return lens,
Example #2
0
	def lens_object(lax,lamp=1.5,lsig=0.05,lx=0.,ly=0.,lpa=0.):
		# Set some SIE lens-model parameters and pack them into an array:
		l_amp = lamp	    # Einstein radius
		l_xcen = lx	    # x position of center
		l_ycen = ly   	    # y position of center
		l_axrat = lax  	    # minor-to-major axis ratio
		l_pa = lpa	    # major-axis position angle (degrees) c.c.w. from x axis
		lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
		lpar2 = np.asarray([l_amp, l_xcen, l_ycen, 2., l_pa]) # rax of 2.
		lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa])

		# The following lines will plot the un-lensed and lensed images side by side:
		(xg, yg) = ldf.sie_grad(x, y, lpar)
		g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)
		lens_source = ldf.gauss_2d(x, y, lenspar)
		lens_source[lens_source < 0.6] = np.nan
		return g_lensimage,lens_source
def update(val):
    g_axrat = sgaxrat.val
    g_xcen = sgxcen.val
    g_ycen = sgycen.val
    g_pa = sgpa.val 
    g_sig = sgsig.val
    l_axrat = slaxrat.val

    gpar = np.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])
    lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
    
    #g_image = ldf.gauss_2d(x, y, gpar)
    (xg, yg) = ldf.sie_grad(x, y, lpar)
    g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)
    f.set_data(g_lensimage)
    fig.canvas.draw_idle()
Example #4
0
def lensed(gamp,gsig,gx,gy,gax,gpa,name,lamp=1.5,lsig=0.05,lx=0.,ly=0.,lax=1.,lpa=0.):
	import numpy as np
	import matplotlib.pyplot as plt
	import matplotlib.gridspec as gridspec
	from matplotlib import cm
	import lensdemo_funcs as ldf
	import fitting_ellipse as fe
	import matplotlib.patheffects as PathEffects

	# Package some image display preferences in a dictionary object, for use below:
	myargs = {'interpolation': 'nearest', 'origin': 'lower', 'cmap': cm.viridis}
	lensargs = {'interpolation': 'nearest', 'origin': 'lower', 'cmap': cm.viridis}

	# Make some x and y coordinate images:
	nx.ny = 501,501
	xhilo,yhilo = [-2.5, 2.5],[-2.5, 2.5]
	x = (xhilo[1] - xhilo[0]) * np.outer(np.ones(ny), np.arange(nx)) / float(nx-1) + xhilo[0]
	y = (yhilo[1] - yhilo[0]) * np.outer(np.arange(ny), np.ones(nx)) / float(ny-1) + yhilo[0]

	# Set some Gaussian blob image parameters and pack them into an array:
	g_amp = gamp	    # peak brightness value
	g_sig = gsig	    # Gaussian "sigma" (i.e., size)
	g_xcen = gx	    # x position of center
	g_ycen = gy	    # y position of center
	g_axrat = gax  	    # minor-to-major axis ratio
	g_pa = gpa	    # major-axis position angle (degrees) c.c.w. from x axis
	gpar = np.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])

	def lens_object(lax,lamp=1.5,lsig=0.05,lx=0.,ly=0.,lpa=0.):
		# Set some SIE lens-model parameters and pack them into an array:
		l_amp = lamp	    # Einstein radius
		l_xcen = lx	    # x position of center
		l_ycen = ly   	    # y position of center
		l_axrat = lax  	    # minor-to-major axis ratio
		l_pa = lpa	    # major-axis position angle (degrees) c.c.w. from x axis
		lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
		lpar2 = np.asarray([l_amp, l_xcen, l_ycen, 2., l_pa]) # rax of 2.
		lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa])

		# The following lines will plot the un-lensed and lensed images side by side:
		(xg, yg) = ldf.sie_grad(x, y, lpar)
		g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)
		lens_source = ldf.gauss_2d(x, y, lenspar)
		lens_source[lens_source < 0.6] = np.nan
		return g_lensimage,lens_source

	# defining bkgd source and lensed source (for both rax)
	g_image = ldf.gauss_2d(x, y, gpar)
	glens1,lens1 = lens_object(1.)
	glens2,lens2 = lens_object(2.)

	plt.figure(figsize=(15,6))
	gs1 = gridspec.GridSpec(1,3)
	gs1.update(wspace=0.03)
	cmap = plt.cm.viridis

	# background source (no lens)
	ax1 = plt.subplot(gs1[0])
	im = ax1.imshow(g_image,**myargs,clim=(0.5,2.2)) # set to make the lens the same always
	vmin, vmax = im.get_clim()			 # set to make the lens the same always
	ax1.set_yticklabels([]); ax1.set_xticklabels([])
	ax1.set_yticks([]); ax1.set_xticks([])
	
	txt = ax1.text(20,457,'Background Source', size=15, color='w')
	txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')])

	# background source lensed by point-like lens
	ax2 = plt.subplot(gs1[1])
	ax2.imshow(glens1,**myargs,clim=(vmin,vmax))
	ax2.imshow(lens1,**lensargs,clim=(vmin,vmax))
	
	cir = plt.Circle((250,250),150,fill=False,ls='--',color='C0')
	ax2.add_artist(cir)
	ax2.set_yticklabels([]); ax2.set_xticklabels([])
	ax2.set_yticks([]); ax2.set_xticks([])
	
	txt = ax2.text(20,457,'Point-like Lens', size=15, color='w')
	txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')])

	# Listing parameters on ax1
	txt = ax1.text(20,20,'amp:%s, sig:%s,\ncenter:(%s,%s),\naxrat:%s, pa:%s'\
		%(gpar[0],gpar[1],gpar[2],gpar[3],gpar[4],gpar[5]), size=13, color='w')
	txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')])

	# background source lensed by extended lens
	ax3 = plt.subplot(gs1[2])
	ax3.imshow(glens2,**myargs,clim=(vmin,vmax))
	ax3.imshow(lens2,**lensargs,clim=(vmin,vmax))

	cir = plt.Circle((250,250),150,fill=False,ls='--',color='C0')
	ax3.add_artist(cir)
	ax3.set_yticklabels([]); ax3.set_xticklabels([])
	ax3.set_yticks([]); ax3.set_xticks([])
	
	txt = ax3.text(20,457,'Extended Lens', size=15, color='w')
	txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')])

	#plt.savefig('test.png',dpi=200) # useful for troubleshooting
	plt.savefig('lens2-still%s.pdf'%(name),dpi=200)	
	plt.close('all')
Example #5
0
def lookup(par):
    """
    PURPOSE: Calculate the flux received in a SDSSIII fiber over the intrinsic flux as a
    function of impact parameter, Einstein radius, axis ratio, size, etc...

    USAGE: f_f/f_i = lookup(par[b, q_l, P.A_l, amp, sigma_s, xcen_s, ycen_s,q_s, P.A_s])

    ARGUMENTS:
    pars:
       par[0]: Einstein Radius
       par[1]: Axis ratio of lens
       par[2]: Position angle of lens (c.c.w. major-axis rotation w.r.t. x-axis)
       par[3]: Amplitude of source galaxy
       par[4]: Intermediate-axis sigma of source galaxy
       par[5]: x coordinate of source galaxy
       par[6]: y coordinate of source galaxy
       par[7]: Axis ratio of source
       par[8]: Position angle of source (c.c.w. major-axis rotation w.r.t. x-axis)

    RETURNS:  Ratio of flux in fiber w.r.t intrinsic flux

    WRITTEN:  Ryan A. Arneson, U. of Utah, 2010
    """
    #Define the pixel scale to be 0.01"/pixel

    myargs = {
        'interpolation': 'nearest',
        'origin': 'lower',
        'cmap': cm.gray,
        'hold': False
    }

    psf = g.gauss2d(800, 150)

    nx = 1600.
    ny = 1600.
    ximg = n.outer(n.ones(ny), n.arange(nx, dtype='float')) - 800.
    yimg = n.outer(n.arange(ny, dtype='float'), n.ones(nx)) - 800.

    #lpar_guess = n.asarray([b, xcen, ycen, q, P.A.])
    lpar_guess = n.asarray([par[0], 0.0, 0.0, par[1], par[2]])
    #gpar_guess = n.asarray([amp., sigma, xcen, ycen, q, P.A.])
    gpar_guess = n.asarray([par[3], par[4], par[5], par[6], par[7], par[8]])
    xg, yg = ldf.sie_grad(ximg, yimg, lpar_guess)
    lmodel = ldf.gauss_2d(ximg - xg, yimg - yg, gpar_guess)
    #lmodel = signal.fftconvolve(lmodel, psf, mode='same')
    #lmodel = lmodel[1:1601,1:1601]

    fiber = yimg
    for i in range(0, 1600):
        for j in range(0, 1600):
            fiber[i, j] = n.sqrt(fiber[i, j]**2 + (j - 800.)**2)

    for i in range(0, 1600):
        for j in range(0, 1600):
            if fiber[i, j] <= 100:
                fiber[i, j] = 1.0
            else:
                fiber[i, j] = 0.0

    fiber = signal.fftconvolve(fiber, psf, mode='same')
    fiber = fiber[1:1601, 1:1601]

    f_f = n.sum(lmodel * fiber)
    #calculate the intrinisic flux (i.e. b=0)
    lpar_guess[0] = 0.0
    ximg = n.outer(n.ones(ny), n.arange(nx, dtype='float')) - 800.
    yimg = n.outer(n.arange(ny, dtype='float'), n.ones(nx)) - 800.
    xg, yg = ldf.sie_grad(ximg, yimg, lpar_guess)
    lmodel2 = ldf.gauss_2d(ximg - xg, yimg - yg, gpar_guess)
    #lmodel2 = signal.fftconvolve(lmodel2, psf, mode='same')
    #lmodel2 = lmodel2[1:1601,1:1601]
    f_i = n.sum(lmodel2 * fiber)

    mag = f_f / f_i
    #p.imshow(n.hstack((lmodel*fiber,lmodel2*fiber)),**myargs)
    return mag
g_ycen = 0.0  # y position of center
g_axrat = 1.0 # minor-to-major axis ratio
g_pa = 0.0    # major-axis position angle (degrees) c.c.w. from x axis
gpar = np.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])

# Set some SIE lens-model parameters and pack them into an array:
l_amp = 1.5   # Einstein radius
l_xcen = 0.0  # x position of center
l_ycen = 0.0  # y position of center
l_axrat = 1.0 # minor-to-major axis ratio
l_pa = 0.0    # major-axis position angle (degrees) c.c.w. from x axis
lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])

#g_image = ldf.gauss_2d(x, y, gpar)
(xg, yg) = ldf.sie_grad(x, y, lpar)
g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)

f = plt.imshow(g_lensimage, **myargs)

ax = plt.axes([0.25,0.1,0.65,0.03])
slaxrat = Slider(ax, 'Lens Axis Ratio', 0.0, 5.0, valinit=l_axrat)

ax = plt.axes([0.25,0.15,0.65,0.03])
sgaxrat = Slider(ax, 'Gaussian Axis Ratio', 0.0, 5.0, valinit=g_axrat)

ax = plt.axes([0.25,0.20,0.65,0.03])
sgpa = Slider(ax, 'Gaussian Major-Axis Angle', 0.0, 360.0, valinit=g_pa)

ax = plt.axes([0.25,0.25,0.65,0.03])
sgxcen = Slider(ax, 'Gaussian X-center', -1.5, 1.5, valinit=g_xcen)
Example #7
0
def lensed(gamp,
           gsig,
           gx,
           gy,
           gax,
           gpa,
           filename,
           lamp=0.1,
           lsig=0.05,
           lax=1.,
           lpa=0.):
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    from matplotlib import cm
    import lensdemo_funcs as ldf
    import matplotlib.patheffects as PathEffects
    import matplotlib.animation as animation

    # Package some image display preferences in a dictionary object, for use below:
    myargs = {
        'interpolation': 'nearest',
        'aspect': 'auto',
        'origin': 'lower',
        'cmap': cm.viridis
    }
    lensargs = {
        'interpolation': 'nearest',
        'aspect': 'auto',
        'origin': 'lower',
        'cmap': cm.viridis
    }

    # Make some x and y coordinate images:
    nx.ny = 501, 501
    xhilo, yhilo = [-2.5, 2.5], [-2.5, 2.5]
    x = (xhilo[1] - xhilo[0]) * np.outer(
        np.ones(ny), np.arange(nx)) / float(nx - 1) + xhilo[0]
    y = (yhilo[1] - yhilo[0]) * np.outer(
        np.arange(ny), np.ones(nx)) / float(ny - 1) + yhilo[0]

    # Set some Gaussian blob image parameters and pack them into an array:
    g_amp = gamp  # peak brightness value
    g_sig = gsig  # Gaussian "sigma" (i.e., size)
    g_xcen = gx  # x position of center
    g_ycen = gy  # y position of center
    g_axrat = gax  # minor-to-major axis ratio
    g_pa = gpa  # major-axis position angle (degrees) c.c.w. from x axis
    gpar = np.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])

    fig = plt.figure(figsize=(8, 4))
    gs1 = gridspec.GridSpec(1, 2)
    gs1.update(wspace=0.035)
    fig.subplots_adjust(left=0.02, bottom=0.03, right=0.98, top=0.97)

    g_image = ldf.gauss_2d(x, y, gpar)
    ax1 = plt.subplot(gs1[0])
    im = ax1.imshow(g_image, **myargs,
                    clim=(0.5, 2.2))  # set to make the lens the same always
    vmin, vmax = im.get_clim()
    ax1.set_yticklabels([])
    ax1.set_xticklabels([])
    ax1.set_yticks([])
    ax1.set_xticks([])

    txt = ax1.text(20, 457, 'Background Source', size=15, color='w')
    txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')])

    ax2 = plt.subplot(gs1[1])

    def init():
        # Set some SIE lens-model parameters and pack them into an array:
        l_amp = lamp  # Einstein radius
        l_xcen = -2.5  # x position of center
        l_ycen = 2.5  # y position of center
        l_axrat = lax  # minor-to-major axis ratio
        l_pa = lpa  # major-axis position angle (degrees) c.c.w. from x axis
        lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
        lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa])

        # The following lines will plot the un-lensed and lensed images side by side:
        (xg, yg) = ldf.sie_grad(x, y, lpar)
        g_lensimage = ldf.gauss_2d(x - xg, y - yg, gpar)
        lens_source = ldf.gauss_2d(x, y, lenspar)
        lens_source[lens_source < 0.6] = np.nan

        ax2.imshow(g_lensimage, **myargs, clim=(vmin, vmax))
        lens = ax2.imshow(lens_source, **lensargs, clim=(vmin, vmax))
        ax2.set_yticklabels([])
        ax2.set_xticklabels([])
        ax2.set_yticks([])
        ax2.set_xticks([])

        txt = ax2.text(20, 457, 'Lensed Image', size=15, color='w', zorder=5)
        txt.set_path_effects(
            [PathEffects.withStroke(linewidth=5, foreground='k')])
        return lens,

    def lense_it(indx):
        moveit = np.arange(-2.5, 2.5, 0.1)
        # Set some SIE lens-model parameters and pack them into an array:
        l_amp = lamp  # Einstein radius
        l_xcen = moveit[indx]  # x position of center
        l_ycen = moveit[indx] * -1  # y position of center
        l_axrat = lax  # minor-to-major axis ratio
        l_pa = lpa  # major-axis position angle (degrees) c.c.w. from x axis
        lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])
        lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa])

        # The following lines will plot the un-lensed and lensed images side by side:
        (xg, yg) = ldf.sie_grad(x, y, lpar)
        g_lensimage = ldf.gauss_2d(x - xg, y - yg, gpar)
        lens_source = ldf.gauss_2d(x, y, lenspar)
        lens_source[lens_source < 0.6] = np.nan

        ax2.imshow(g_lensimage, **myargs, clim=(vmin, vmax))
        lens = ax2.imshow(lens_source, **lensargs, clim=(vmin, vmax))
        ax2.set_yticklabels([])
        ax2.set_xticklabels([])
        ax2.set_yticks([])
        ax2.set_xticks([])

        txt = ax2.text(20, 457, 'Lensed Source', size=15, color='w', zorder=5)
        txt.set_path_effects(
            [PathEffects.withStroke(linewidth=5, foreground='k')])
        return lens,

    anim = animation.FuncAnimation(fig,lense_it,init_func=init,\
     frames=len(np.arange(-2.5,2.5,0.1)),interval=100,blit=True)

    anim.save('%s.gif'%(filename),fps=20,writer='imagemagick',\
     extra_args=['-vcodec','h264','-pix_fmt','yuv420p'])
    plt.close('all')
Example #8
0
# Set some Gaussian blob image parameters and pack them into an array:
g_amp = 1.0  # peak brightness value
g_sig = 0.05  # Gaussian "sigma" (i.e., size)
g_xcen = 0.0  # x position of center
g_ycen = 0.0  # y position of center
g_axrat = 1.0  # minor-to-major axis ratio
g_pa = 0.0  # major-axis position angle (degrees) c.c.w. from x axis
gpar = n.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])

# Set some SIE lens-model parameters and pack them into an array:
l_amp = 1.5  # Einstein radius
l_xcen = 0.0  # x position of center
l_ycen = 0.0  # y position of center
l_axrat = 1.0  # minor-to-major axis ratio
l_pa = 0.0  # major-axis position angle (degrees) c.c.w. from x axis
lpar = n.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa])

# Compute the lensing potential gradients:
(xg, yg) = ldf.sie_grad(x, y, lpar)

# Evaluate lensed Gaussian image:
g_lensimage = ldf.gauss_2d(x - xg, y - yg, gpar)

# Have a look:
f = p.imshow(g_lensimage, **myargs)

p.savefig('lens_xy1001.png')

n.savetxt("pixel_data_1001.txt", g_lensimage, fmt='%d', delimiter=' ')
l_rcs = 0.00000000001
l_res = 0.00000000001
l_pas = 0.0
l_pars = np.asarray([l_xcens, l_ycens, l_qs, l_rcs,l_res,l_pas])
#----------------------------------------------------------------------
boxsize = 5.0
nn = 512

ri = np.linspace(0.0,boxsize/2.0,nn)
ti = np.linspace(0.0,2.0*np.pi,nn)
ri,ti = np.meshgrid(ri,ti)

xi1 = ri*np.cos(ti)
xi2 = ri*np.sin(ti)

g_image = ldf.gauss_2d(xi1, xi2, gpar)
(ai1, ai2, mui) = le_sie_subs(xi1,xi2,l_par,l_pars)

yi1 = xi1+ai1
yi2 = xi2+ai2
g_lensimage = ldf.gauss_2d(yi1, yi2, gpar)
#--------------------------lens images contour------------------------
levels = [0.15,0.30,0.45,0.60,0.75,0.9,1.05]
lev2 = [1000]
figure(num=None,figsize=(10,5),dpi=80, facecolor='w', edgecolor='k')


a = axes([0.05,0.1,0.4,0.8])
a.set_xlim(-2.5,2.5)
a.set_ylim(-2.5,2.5)
a.contourf(xi1,xi2,g_image,levels)
Example #10
0
# Make some x and y coordinate images:
nx = 501
ny = 501
xhilo = [-2.5, 2.5]
yhilo = [-2.5, 2.5]
x = (xhilo[1] - xhilo[0]) * n.outer(n.ones(ny),
                                    n.arange(nx)) / float(nx - 1) + xhilo[0]
y = (yhilo[1] - yhilo[0]) * n.outer(n.arange(ny),
                                    n.ones(nx)) / float(ny - 1) + yhilo[0]

# Set some Gaussian blob image parameters and pack them into an array:
g_amp = 1.0  # peak brightness value
g_sig = 0.05  # Gaussian "sigma" (i.e., size)
g_xcen = 0.0  # x position of center
g_ycen = 0.0  # y position of center
g_axrat = 1.0  # minor-to-major axis ratio
g_pa = 0.0  # major-axis position angle (degrees) c.c.w. from x axis
gpar = n.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa])

# Have a look at the un-lensed Gaussian image:
g_image = ldf.gauss_2d(x, y, gpar)
f = p.imshow(g_image, **myargs)
# IMPORTANT: Kill these imshow GUIs before redisplaying, or you will get bad memory leaks!
# You can kill it with the "red button", or with the following command:
#p.close(f.get_figure().number)
# Alternatively, if you do the following you will probably be OK redisplaying
# without killing the GUI:
#f.axes.hold(False)
p.show()
Example #11
0
    l2_axrat
except NameError:
    l2_axrat = 1.0 # minor-to-major axis ratio
try:
    l2_pa
except NameError:
    l2_pa = 0.0    # major-axis position angle (degrees) c.c.w. from x axis
l2par = n.asarray([l2_amp, l2_xcen, l2_ycen, l2_axrat, l2_pa])
if l2_amp>0:print '2nd lens\nEinstein Radius: %5.3f\nCenter: (%6.4f,%6.4f)\nAxis Ratio: %5.3f\nPA: %.0f\n'%(l2_amp,l2_xcen,l2_ycen,l2_axrat,l2_pa)

# Compute the lensing potential gradients:
(xg, yg) = ldf.sie_grad(x, y, lpar)

# Evaluate lensed Gaussian image:
if g2_amp > 0:
    g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)+ldf.gauss_2d(x-xg, y-yg, g2par)
else:
g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar)

#p.figure(2)

# Have a look:
#f = p.imshow(g_lensimage, **myargs)

#p.figure(3)

# If you can recall what the parameter place values mean,
# the following lines are most efficient for exploration:
#gpar = n.asarray([1.0, 0.05, 0.0, 0.0, 1.0, 0.0])
#lpar = n.asarray([1.5, 0.0, 0.0, 0.7, 0.0])
(xg, yg) = ldf.sie_grad(x, y, lpar)