Example #1
0
def test_csr_save_load(tmp_path, prefix, values):
    tmp_path = lktu.norm_path(tmp_path)
    coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False)
    rows = np.mod(coords, 100, dtype=np.int32)
    cols = np.floor_divide(coords, 100, dtype=np.int32)
    if values:
        vals = np.random.randn(1000)
    else:
        vals = None

    csr = lm.csr_from_coo(rows, cols, vals, (100, 50))
    assert csr.nrows == 100
    assert csr.ncols == 50
    assert csr.nnz == 1000

    data = lm.csr_save(csr, prefix=prefix)

    np.savez_compressed(tmp_path / 'matrix.npz', **data)

    with np.load(tmp_path / 'matrix.npz') as npz:
        csr2 = lm.csr_load(npz, prefix=prefix)

    assert csr2.nrows == csr.nrows
    assert csr2.ncols == csr.ncols
    assert csr2.nnz == csr.nnz
    assert all(csr2.rowptrs == csr.rowptrs)
    assert all(csr2.colinds == csr.colinds)
    if values:
        assert all(csr2.values == csr.values)
    else:
        assert csr2.values is None
Example #2
0
def test_csr_to_sps():
    # initialize sparse matrix
    mat = np.random.randn(10, 5)
    mat[mat <= 0] = 0
    # get COO
    smat = sps.coo_matrix(mat)
    # make sure it's sparse
    assert smat.nnz == np.sum(mat > 0)

    csr = lm.csr_from_coo(smat.row, smat.col, smat.data, shape=smat.shape)
    assert csr.nnz == smat.nnz
    assert csr.nrows == smat.shape[0]
    assert csr.ncols == smat.shape[1]

    smat2 = lm.csr_to_scipy(csr)
    assert sps.isspmatrix(smat2)
    assert sps.isspmatrix_csr(smat2)

    for i in range(csr.nrows):
        assert smat2.indptr[i] == csr.rowptrs[i]
        assert smat2.indptr[i + 1] == csr.rowptrs[i + 1]
        sp = smat2.indptr[i]
        ep = smat2.indptr[i + 1]
        assert all(smat2.indices[sp:ep] == csr.colinds[sp:ep])
        assert all(smat2.data[sp:ep] == csr.values[sp:ep])
Example #3
0
def test_csr_from_coo_rand():
    for i in range(100):
        coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000,
                                  False)
        rows = np.mod(coords, 100, dtype=np.int32)
        cols = np.floor_divide(coords, 100, dtype=np.int32)
        vals = np.random.randn(1000)

        csr = lm.csr_from_coo(rows, cols, vals, (100, 50))
        assert csr.nrows == 100
        assert csr.ncols == 50
        assert csr.nnz == 1000

        for i in range(100):
            sp = csr.rowptrs[i]
            ep = csr.rowptrs[i + 1]
            assert ep - sp == np.sum(rows == i)
            points, = np.nonzero(rows == i)
            assert len(points) == ep - sp
            po = np.argsort(cols[points])
            points = points[po]
            assert all(np.sort(csr.colinds[sp:ep]) == cols[points])
            assert all(np.sort(csr.row_cs(i)) == cols[points])
            assert all(csr.values[np.argsort(csr.colinds[sp:ep]) +
                                  sp] == vals[points])
            row = np.zeros(50)
            row[cols[points]] = vals[points]
            assert np.sum(csr.row(i)) == approx(np.sum(vals[points]))
            assert all(csr.row(i) == row)
Example #4
0
def test_csr_row():
    rows = np.array([0, 0, 1, 3], dtype=np.int32)
    cols = np.array([1, 2, 0, 1], dtype=np.int32)
    vals = np.arange(4, dtype=np.float_) + 1

    csr = lm.csr_from_coo(rows, cols, vals)
    assert all(csr.row(0) == np.array([0, 1, 2], dtype=np.float_))
    assert all(csr.row(1) == np.array([3, 0, 0], dtype=np.float_))
    assert all(csr.row(2) == np.array([0, 0, 0], dtype=np.float_))
    assert all(csr.row(3) == np.array([0, 4, 0], dtype=np.float_))
Example #5
0
def test_csr_from_coo():
    rows = np.array([0, 0, 1, 3], dtype=np.int32)
    cols = np.array([1, 2, 0, 1], dtype=np.int32)
    vals = np.arange(4, dtype=np.float_)

    csr = lm.csr_from_coo(rows, cols, vals)
    assert csr.nrows == 4
    assert csr.ncols == 3
    assert csr.nnz == 4
    assert csr.values == approx(vals)
Example #6
0
def test_csr_sparse_row():
    rows = np.array([0, 0, 1, 3], dtype=np.int32)
    cols = np.array([1, 2, 0, 1], dtype=np.int32)
    vals = np.arange(4, dtype=np.float_)

    csr = lm.csr_from_coo(rows, cols, vals)
    assert all(csr.row_cs(0) == np.array([1, 2], dtype=np.int32))
    assert all(csr.row_cs(1) == np.array([0], dtype=np.int32))
    assert all(csr.row_cs(2) == np.array([], dtype=np.int32))
    assert all(csr.row_cs(3) == np.array([1], dtype=np.int32))

    assert all(csr.row_vs(0) == np.array([0, 1], dtype=np.float_))
    assert all(csr.row_vs(1) == np.array([2], dtype=np.float_))
    assert all(csr.row_vs(2) == np.array([], dtype=np.float_))
    assert all(csr.row_vs(3) == np.array([3], dtype=np.float_))
Example #7
0
def test_csr_transpose():
    rows = np.array([0, 0, 1, 3], dtype=np.int32)
    cols = np.array([1, 2, 0, 1], dtype=np.int32)
    vals = np.arange(4, dtype=np.float_)

    csr = lm.csr_from_coo(rows, cols, vals)
    csc = csr.transpose()
    assert csc.nrows == csr.ncols
    assert csc.ncols == csr.nrows

    assert all(csc.rowptrs == [0, 1, 3, 4])
    assert csc.colinds.max() == 3
    assert csc.values.sum() == approx(vals.sum())

    for r, c, v in zip(rows, cols, vals):
        row = csc.row(c)
        assert row[r] == v
Example #8
0
def test_csr_from_coo_novals():
    for i in range(50):
        coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000,
                                  False)
        rows = np.mod(coords, 100, dtype=np.int32)
        cols = np.floor_divide(coords, 100, dtype=np.int32)

        csr = lm.csr_from_coo(rows, cols, None, (100, 50))
        assert csr.nrows == 100
        assert csr.ncols == 50
        assert csr.nnz == 1000

        for i in range(100):
            sp = csr.rowptrs[i]
            ep = csr.rowptrs[i + 1]
            assert ep - sp == np.sum(rows == i)
            points, = np.nonzero(rows == i)
            po = np.argsort(cols[points])
            points = points[po]
            assert all(np.sort(csr.colinds[sp:ep]) == cols[points])
            assert np.sum(csr.row(i)) == len(points)
Example #9
0
    def _select_similarities(self, nitems, rows, cols, vals):
        _logger.info('[%s] ordering similarities', self._timer)
        csr = matrix.csr_from_coo(rows, cols, vals, shape=(nitems, nitems))
        csr.sort_values()

        if self.save_nbrs is None or self.save_nbrs <= 0:
            return csr

        _logger.info('[%s] picking %d top similarities', self._timer,
                     self.save_nbrs)
        counts = csr.row_nnzs()
        _logger.debug('have %d rows in size range [%d,%d]', len(counts),
                      np.min(counts), np.max(counts))
        ncounts = np.fmin(counts, self.save_nbrs)
        _logger.debug('will have %d rows in size range [%d,%d]', len(ncounts),
                      np.min(ncounts), np.max(ncounts))
        assert np.all(ncounts <= self.save_nbrs)
        assert np.all(ncounts >= 0)
        nnz = np.sum(ncounts)

        rp2 = np.zeros_like(csr.rowptrs)
        rp2[1:] = np.cumsum(ncounts)
        ci2 = np.zeros(nnz, np.int32)
        vs2 = np.zeros(nnz)
        for i in range(nitems):
            sp1 = csr.rowptrs[i]
            sp2 = rp2[i]

            ep1 = sp1 + ncounts[i]
            ep2 = sp2 + ncounts[i]
            assert ep1 - sp1 == ep2 - sp2

            ci2[sp2:ep2] = csr.colinds[sp1:ep1]
            vs2[sp2:ep2] = csr.values[sp1:ep1]

        return matrix.CSR(csr.nrows, csr.ncols, nnz, rp2, ci2, vs2)