Example #1
0
    def test_curved_arc_estimate(self):
        lens_model_list = ['SPP']
        lens = LensModel(lens_model_list=lens_model_list)
        arc = LensModel(lens_model_list=['CURVED_ARC'])
        theta_E = 4
        gamma = 2.
        kwargs_lens = [{
            'theta_E': theta_E,
            'gamma': gamma,
            'center_x': 0,
            'center_y': 0
        }]
        ext = LensModelExtensions(lensModel=lens)
        x_0, y_0 = 5, 0
        kwargs_arc = ext.curved_arc_estimate(x_0, y_0, kwargs_lens)
        theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc = CurvedArc.stretch2spp(
            **kwargs_arc)
        npt.assert_almost_equal(theta_E_arc, theta_E, decimal=4)
        npt.assert_almost_equal(gamma_arc, gamma, decimal=3)
        npt.assert_almost_equal(center_x_spp_arc, 0, decimal=3)
        npt.assert_almost_equal(center_y_spp_arc, 0, decimal=3)
        x, y = util.make_grid(numPix=10, deltapix=1)
        alpha_x, alpha_y = lens.alpha(x, y, kwargs_lens)
        alpha0_x, alpha0_y = lens.alpha(x_0, y_0, kwargs_lens)
        alpha_x_arc, alpha_y_arc = arc.alpha(x, y, [kwargs_arc])
        npt.assert_almost_equal(alpha_x_arc, alpha_x - alpha0_x, decimal=3)
        npt.assert_almost_equal(alpha_y_arc, alpha_y - alpha0_y, decimal=3)

        x_0, y_0 = 0., 3
        kwargs_arc = ext.curved_arc_estimate(x_0, y_0, kwargs_lens)
        theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc = CurvedArc.stretch2spp(
            **kwargs_arc)
        print(kwargs_arc)
        print(theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc)
        npt.assert_almost_equal(theta_E_arc, theta_E, decimal=4)
        npt.assert_almost_equal(gamma_arc, gamma, decimal=3)
        npt.assert_almost_equal(center_x_spp_arc, 0, decimal=3)
        npt.assert_almost_equal(center_y_spp_arc, 0, decimal=3)

        x_0, y_0 = -2, -3
        kwargs_arc = ext.curved_arc_estimate(x_0, y_0, kwargs_lens)
        theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc = CurvedArc.stretch2spp(
            **kwargs_arc)
        npt.assert_almost_equal(theta_E_arc, theta_E, decimal=4)
        npt.assert_almost_equal(gamma_arc, gamma, decimal=3)
        npt.assert_almost_equal(center_x_spp_arc, 0, decimal=3)
        npt.assert_almost_equal(center_y_spp_arc, 0, decimal=3)
Example #2
0
    def test_arcs_at_image_position(self):
        # lensing quantities
        kwargs_spp = {
            'theta_E': 1.26,
            'gamma': 2.,
            'e1': 0.1,
            'e2': -0.1,
            'center_x': 0.0,
            'center_y': 0.0
        }  # parameters of the deflector lens model

        # the lens model is a supperposition of an elliptical lens model with external shear
        lens_model_list = ['SPEP']  #, 'SHEAR']
        kwargs_lens = [kwargs_spp]  #, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        lensEquationSolver = LensEquationSolver(lens_model_class)
        source_x = 0.
        source_y = 0.05
        x_image, y_image = lensEquationSolver.findBrightImage(
            source_x,
            source_y,
            kwargs_lens,
            numImages=4,
            min_distance=0.05,
            search_window=5)
        arc_model = LensModel(lens_model_list=['CURVED_ARC', 'SHIFT'])
        for i in range(len(x_image)):
            x0, y0 = x_image[i], y_image[i]
            print(x0, y0, i)
            ext = LensModelExtensions(lensModel=lens_model_class)
            kwargs_arc_i = ext.curved_arc_estimate(x0, y0, kwargs_lens)
            alpha_x, alpha_y = lens_model_class.alpha(x0, y0, kwargs_lens)
            kwargs_arc = [
                kwargs_arc_i, {
                    'alpha_x': alpha_x,
                    'alpha_y': alpha_y
                }
            ]
            print(kwargs_arc_i)
            direction = kwargs_arc_i['direction']
            print(np.cos(direction), np.sin(direction))
            x, y = util.make_grid(numPix=5, deltapix=0.01)
            x = x0
            y = y0
            gamma1_arc, gamma2_arc = arc_model.gamma(x, y, kwargs_arc)
            gamma1, gamma2 = lens_model_class.gamma(x, y, kwargs_lens)
            print(gamma1, gamma2)
            npt.assert_almost_equal(gamma1_arc, gamma1, decimal=3)
            npt.assert_almost_equal(gamma2_arc, gamma2, decimal=3)
            theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc = CurvedArc.stretch2spp(
                **kwargs_arc_i)
            print(theta_E_arc, gamma_arc, center_x_spp_arc, center_y_spp_arc)
            npt.assert_almost_equal(center_x_spp_arc, 0, decimal=3)
            npt.assert_almost_equal(center_y_spp_arc, 0, decimal=3)
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Example #4
0
 def setup(self):
     self.model = CurvedArc()
     self.spp = SPP()
Example #5
0
class TestCurvedArc(object):
    """
    tests the source model routines
    """
    def setup(self):
        self.model = CurvedArc()
        self.spp = SPP()

    def test_function(self):
        output = self.model.function(1, 1, tangential_stretch=2, radial_stretch=1, r_curvature=2, direction=0, center_x=0, center_y=0)
        theta_E, gamma, center_x_spp, center_y_spp = self.model._input2spp_parameterization(tangential_stretch=2, radial_stretch=1, r_curvature=2, direction=0,
                                               center_x=0, center_y=0)
        out_spp = self.spp.function(1, 1, theta_E, gamma, center_x_spp, center_y_spp) - self.spp.function(0, 0,  theta_E, gamma, center_x_spp, center_y_spp)
        npt.assert_almost_equal(output, out_spp, decimal=8)

    def test_derivatives(self):
        tangential_stretch = 5
        radial_stretch = 1
        r_curvature = 10
        direction = 0.3
        center_x = 0
        center_y = 0
        x, y = 1, 1
        theta_E, gamma, center_x_spp, center_y_spp = self.model._input2spp_parameterization(tangential_stretch,
                                                                                      radial_stretch, r_curvature,
                                                                                      direction, center_x, center_y)
        f_x, f_y = self.spp.derivatives(x, y, theta_E, gamma, center_x_spp, center_y_spp)
        f_x0, f_y0 = self.spp.derivatives(center_x, center_y, theta_E, gamma, center_x_spp, center_y_spp)
        f_x_new, f_y_new = self.model.derivatives(x, y, tangential_stretch, radial_stretch, r_curvature, direction, center_x, center_y)
        npt.assert_almost_equal(f_x_new, f_x - f_x0, decimal=8)
        npt.assert_almost_equal(f_y_new, f_y - f_y0, decimal=8)

    def test_hessian(self):
        lens = LensModel(lens_model_list=['CURVED_ARC'])
        center_x, center_y = 0, 0
        tangential_stretch = 10
        radial_stretch = 1
        kwargs_lens = [
            {'tangential_stretch': tangential_stretch, 'radial_stretch': radial_stretch, 'r_curvature': 10.5, 'direction': 0.,
             'center_x': center_x, 'center_y': center_y}]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag, tangential_stretch * radial_stretch, decimal=8)

        center_x, center_y = 2, 3
        tangential_stretch = 10
        radial_stretch = 1
        kwargs_lens = [
            {'tangential_stretch': tangential_stretch, 'radial_stretch': radial_stretch, 'r_curvature': 10.5, 'direction': 0.,
             'center_x': center_x, 'center_y': center_y}]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag, tangential_stretch * radial_stretch, decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = 3
        radial_stretch = -1
        kwargs_lens = [
            {'tangential_stretch': tangential_stretch, 'radial_stretch': radial_stretch, 'r_curvature': 10.5,
             'direction': 0.,
             'center_x': center_x, 'center_y': center_y}]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag, tangential_stretch * radial_stretch, decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = -3
        radial_stretch = -1
        kwargs_lens = [
            {'tangential_stretch': tangential_stretch, 'radial_stretch': radial_stretch, 'r_curvature': 10.5,
             'direction': 0.,
             'center_x': center_x, 'center_y': center_y}]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag, tangential_stretch * radial_stretch, decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = 10.4
        radial_stretch = 0.6
        kwargs_lens = [
            {'tangential_stretch': tangential_stretch, 'radial_stretch': radial_stretch, 'r_curvature': 10.5,
             'direction': 0.,
             'center_x': center_x, 'center_y': center_y}]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag, tangential_stretch * radial_stretch, decimal=8)
Example #6
0
class TestCurvedArc(object):
    """
    tests the source model routines
    """
    def setup(self):
        self.model = CurvedArc()
        self.spp = SPP()

    def test_spp2stretch(self):
        center_x, center_y = 1, 1
        theta_E = 1
        gamma = 1.9
        center_x_spp, center_y_spp = 0., 0

        tangential_stretch, radial_stretch, curvature, direction = self.model.spp2stretch(
            theta_E, gamma, center_x_spp, center_y_spp, center_x, center_y)
        theta_E_new, gamma_new, center_x_spp_new, center_y_spp_new = self.model.stretch2spp(
            tangential_stretch, radial_stretch, curvature, direction, center_x,
            center_y)
        npt.assert_almost_equal(center_x_spp_new, center_x_spp, decimal=8)
        npt.assert_almost_equal(center_y_spp_new, center_y_spp, decimal=8)
        npt.assert_almost_equal(theta_E_new, theta_E, decimal=8)
        npt.assert_almost_equal(gamma_new, gamma, decimal=8)

        center_x, center_y = -1, 1
        tangential_stretch, radial_stretch, curvature, direction = self.model.spp2stretch(
            theta_E, gamma, center_x_spp, center_y_spp, center_x, center_y)
        theta_E_new, gamma_new, center_x_spp_new, center_y_spp_new = self.model.stretch2spp(
            tangential_stretch, radial_stretch, curvature, direction, center_x,
            center_y)
        npt.assert_almost_equal(center_x_spp_new, center_x_spp, decimal=8)
        npt.assert_almost_equal(center_y_spp_new, center_y_spp, decimal=8)
        npt.assert_almost_equal(theta_E_new, theta_E, decimal=8)
        npt.assert_almost_equal(gamma_new, gamma, decimal=8)

        center_x, center_y = 0, 0.5
        tangential_stretch, radial_stretch, curvature, direction = self.model.spp2stretch(
            theta_E, gamma, center_x_spp, center_y_spp, center_x, center_y)
        theta_E_new, gamma_new, center_x_spp_new, center_y_spp_new = self.model.stretch2spp(
            tangential_stretch, radial_stretch, curvature, direction, center_x,
            center_y)
        npt.assert_almost_equal(center_x_spp_new, center_x_spp, decimal=8)
        npt.assert_almost_equal(center_y_spp_new, center_y_spp, decimal=8)
        npt.assert_almost_equal(theta_E_new, theta_E, decimal=8)
        npt.assert_almost_equal(gamma_new, gamma, decimal=8)

        center_x, center_y = 0, -1.5
        tangential_stretch, radial_stretch, r_curvature, direction = self.model.spp2stretch(
            theta_E, gamma, center_x_spp, center_y_spp, center_x, center_y)
        print(tangential_stretch, radial_stretch, r_curvature, direction)
        theta_E_new, gamma_new, center_x_spp_new, center_y_spp_new = self.model.stretch2spp(
            tangential_stretch, radial_stretch, r_curvature, direction,
            center_x, center_y)
        npt.assert_almost_equal(center_x_spp_new, center_x_spp, decimal=8)
        npt.assert_almost_equal(center_y_spp_new, center_y_spp, decimal=8)
        npt.assert_almost_equal(theta_E_new, theta_E, decimal=8)
        npt.assert_almost_equal(gamma_new, gamma, decimal=8)

    def test_function(self):
        center_x, center_y = 0., 0.
        x, y = 1, 1
        output = self.model.function(x,
                                     y,
                                     tangential_stretch=2,
                                     radial_stretch=1,
                                     curvature=1. / 2,
                                     direction=0,
                                     center_x=0,
                                     center_y=0)
        theta_E, gamma, center_x_spp, center_y_spp = self.model.stretch2spp(
            tangential_stretch=2,
            radial_stretch=1,
            curvature=1. / 2,
            direction=0,
            center_x=0,
            center_y=0)
        out_spp = self.spp.function(1, 1, theta_E, gamma, center_x_spp,
                                    center_y_spp)
        alpha_x, alpha_y = self.spp.derivatives(center_x, center_y, theta_E,
                                                gamma, center_x_spp,
                                                center_y_spp)
        f_0 = alpha_x * (x - center_x) + alpha_y * (y - center_y)

        npt.assert_almost_equal(output, out_spp - f_0, decimal=8)

    def test_derivatives(self):
        tangential_stretch = 5
        radial_stretch = 1
        curvature = 1. / 10
        direction = 0.3
        center_x = 0
        center_y = 0
        x, y = 1, 1
        theta_E, gamma, center_x_spp, center_y_spp = self.model.stretch2spp(
            tangential_stretch, radial_stretch, curvature, direction, center_x,
            center_y)
        f_x, f_y = self.spp.derivatives(x, y, theta_E, gamma, center_x_spp,
                                        center_y_spp)
        f_x0, f_y0 = self.spp.derivatives(center_x, center_y, theta_E, gamma,
                                          center_x_spp, center_y_spp)
        f_x_new, f_y_new = self.model.derivatives(x, y, tangential_stretch,
                                                  radial_stretch, curvature,
                                                  direction, center_x,
                                                  center_y)
        npt.assert_almost_equal(f_x_new, f_x - f_x0, decimal=8)
        npt.assert_almost_equal(f_y_new, f_y - f_y0, decimal=8)

    def test_hessian(self):
        lens = LensModel(lens_model_list=['CURVED_ARC'])
        center_x, center_y = 0, 0
        tangential_stretch = 10
        radial_stretch = 1
        kwargs_lens = [{
            'tangential_stretch': tangential_stretch,
            'radial_stretch': radial_stretch,
            'curvature': 1. / 10.5,
            'direction': 0.,
            'center_x': center_x,
            'center_y': center_y
        }]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag,
                                tangential_stretch * radial_stretch,
                                decimal=8)

        center_x, center_y = 2, 3
        tangential_stretch = 10
        radial_stretch = 1
        kwargs_lens = [{
            'tangential_stretch': tangential_stretch,
            'radial_stretch': radial_stretch,
            'curvature': 1. / 10.5,
            'direction': 0.,
            'center_x': center_x,
            'center_y': center_y
        }]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag,
                                tangential_stretch * radial_stretch,
                                decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = 3
        radial_stretch = -1
        kwargs_lens = [{
            'tangential_stretch': tangential_stretch,
            'radial_stretch': radial_stretch,
            'curvature': 1. / 10.5,
            'direction': 0.,
            'center_x': center_x,
            'center_y': center_y
        }]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag,
                                tangential_stretch * radial_stretch,
                                decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = -3
        radial_stretch = -1
        kwargs_lens = [{
            'tangential_stretch': tangential_stretch,
            'radial_stretch': radial_stretch,
            'curvature': 1. / 10.5,
            'direction': 0.,
            'center_x': center_x,
            'center_y': center_y
        }]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag,
                                tangential_stretch * radial_stretch,
                                decimal=8)

        center_x, center_y = 0, 0
        tangential_stretch = 10.4
        radial_stretch = 0.6
        kwargs_lens = [{
            'tangential_stretch': tangential_stretch,
            'radial_stretch': radial_stretch,
            'curvature': 1. / 10.5,
            'direction': 0.,
            'center_x': center_x,
            'center_y': center_y
        }]
        mag = lens.magnification(center_x, center_y, kwargs=kwargs_lens)
        npt.assert_almost_equal(mag,
                                tangential_stretch * radial_stretch,
                                decimal=8)
Example #7
0
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)