class TestEPLvsNIE(object): """ tests the Gaussian methods """ def setup(self): from lenstronomy.LensModel.Profiles.epl import EPL self.EPL = EPL() from lenstronomy.LensModel.Profiles.nie import NIE self.NIE = NIE() def test_function(self): phi_E = 1. gamma = 2. q = 0.999 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) q = 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) q = 0.4 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 2. q = 1. phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) q = 0.7 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) def test_hessian(self): x = np.array([1.]) y = np.array([2.]) phi_E = 1. gamma = 2. q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_xy, f_yx, f_yy = self.EPL.hessian(x, y, phi_E, gamma, e1, e2) f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.NIE.hessian(x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_yx, decimal=8) def test_density_lens(self): r = 1 kwargs = {'theta_E': 1, 'gamma': 2, 'e1': 0, 'e2': 0} rho = self.EPL.density_lens(r, **kwargs) from lenstronomy.LensModel.Profiles.spep import SPEP spep = SPEP() rho_spep = spep.density_lens(r, **kwargs) npt.assert_almost_equal(rho, rho_spep, decimal=7) def test_mass_3d_lens(self): r = 1 kwargs = {'theta_E': 1, 'gamma': 2, 'e1': 0, 'e2': 0} rho = self.EPL.mass_3d_lens(r, **kwargs) from lenstronomy.LensModel.Profiles.spep import SPEP spep = SPEP() rho_spep = spep.mass_3d_lens(r, **kwargs) npt.assert_almost_equal(rho, rho_spep, decimal=7) def test_static(self): x, y = 1., 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'theta_E': 1., 'gamma': 1.5, 'e1': e1, 'e2': e2} f_ = self.EPL.function(x, y, **kwargs_lens) self.EPL.set_static(**kwargs_lens) f_static = self.EPL.function(x, y, **kwargs_lens) npt.assert_almost_equal(f_, f_static, decimal=8) self.EPL.set_dynamic() kwargs_lens = {'theta_E': 2., 'gamma': 1.9, 'e1': e1, 'e2': e2} f_dyn = self.EPL.function(x, y, **kwargs_lens) assert f_dyn != f_static def test_regularization(self): phi_E = 1. gamma = 2. q = 1. phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = 0. y = 0. f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, 0.) npt.assert_almost_equal(f_y, 0.) x = 0. y = 0. f_xx, f_xy, f_yx, f_yy = self.EPL.hessian(x, y, phi_E, gamma, e1, e2) assert f_xx > 10 ** 5 assert f_yy > 10 ** 5 #npt.assert_almost_equal(f_xx, 10**10) #npt.assert_almost_equal(f_yy, 10**10) npt.assert_almost_equal(f_xy, 0) npt.assert_almost_equal(f_yx, 0)
class SIE(LensProfileBase): """ class for singular isothermal ellipsoid (SIS with ellipticity) .. math:: \\kappa(x, y) = \\frac{1}{2} \\left(\\frac{\\theta_{E}}{\\sqrt{q x^2 + y^2/q}} \\right) with :math:`\\theta_{E}` is the (circularized) Einstein radius, :math:`q` is the minor/major axis ratio, and :math:`x` and :math:`y` are defined in a coordinate sys- tem aligned with the major and minor axis of the lens. In terms of eccentricities, this profile is defined as .. math:: \\kappa(r) = \\frac{1}{2} \\left(\\frac{\\theta'_{E}}{r \\sqrt{1 − e*\\cos(2*\\phi)}} \\right) with :math:`\\epsilon` is the ellipticity defined as .. math:: \\epsilon = \\frac{1-q^2}{1+q^2} And an Einstein radius :math:`\\theta'_{\\rm E}` related to the definition used is .. math:: \\left(\\frac{\\theta'_{\\rm E}}{\\theta_{\\rm E}}\\right)^{2} = \\frac{2q}{1+q^2}. """ param_names = ['theta_E', 'e1', 'e2', 'center_x', 'center_y'] lower_limit_default = { 'theta_E': 0, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100 } upper_limit_default = { 'theta_E': 100, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100 } def __init__(self, NIE=True): """ :param NIE: bool, if True, is using the NIE analytic model. Otherwise it uses PEMD with gamma=2 from fastell4py """ self._nie = NIE if NIE: from lenstronomy.LensModel.Profiles.nie import NIE self.profile = NIE() else: from lenstronomy.LensModel.Profiles.epl import EPL self.profile = EPL() self._s_scale = 0.0000000001 self._gamma = 2 super(SIE, self).__init__() def function(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angular coordinates) :param y: y-coordinate (angular coordinates) :param theta_E: Einstein radius :param e1: eccentricity :param e2: eccentricity :param center_x: centroid :param center_y: centroid :return: """ if self._nie: return self.profile.function(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.function(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) def derivatives(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angular coordinates) :param y: y-coordinate (angular coordinates) :param theta_E: Einstein radius :param e1: eccentricity :param e2: eccentricity :param center_x: centroid :param center_y: centroid :return: """ if self._nie: return self.profile.derivatives(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.derivatives(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) def hessian(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: x-coordinate (angular coordinates) :param y: y-coordinate (angular coordinates) :param theta_E: Einstein radius :param e1: eccentricity :param e2: eccentricity :param center_x: centroid :param center_y: centroid :return: """ if self._nie: return self.profile.hessian(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.hessian(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) @staticmethod def theta2rho(theta_E): """ converts projected density parameter (in units of deflection) into 3d density parameter :param theta_E: :return: """ fac1 = np.pi * 2 rho0 = theta_E / fac1 return rho0 @staticmethod def mass_3d(r, rho0, e1=0, e2=0): """ mass enclosed a 3d sphere or radius r :param r: radius in angular units :param rho0: density at angle=1 :return: mass in angular units """ mass_3d = 4 * np.pi * rho0 * r return mass_3d def mass_3d_lens(self, r, theta_E, e1=0, e2=0): """ mass enclosed a 3d sphere or radius r given a lens parameterization with angular units :param r: radius in angular units :param theta_E: Einstein radius :return: mass in angular units """ rho0 = self.theta2rho(theta_E) return self.mass_3d(r, rho0) def mass_2d(self, r, rho0, e1=0, e2=0): """ mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param e1: :param e2: :return: """ alpha = 2 * rho0 * np.pi**2 mass_2d = alpha * r return mass_2d def mass_2d_lens(self, r, theta_E, e1=0, e2=0): """ :param r: :param theta_E: :param e1: :param e2: :return: """ rho0 = self.theta2rho(theta_E) return self.mass_2d(r, rho0) def grav_pot(self, x, y, rho0, e1=0, e2=0, center_x=0, center_y=0): """ gravitational potential (modulo 4 pi G and rho0 in appropriate units) :param x: :param y: :param rho0: :param e1: :param e2: :param center_x: :param center_y: :return: """ x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) mass_3d = self.mass_3d(r, rho0) pot = mass_3d / r return pot def density_lens(self, r, theta_E, e1=0, e2=0): """ computes the density at 3d radius r given lens model parameterization. The integral in the LOS projection of this quantity results in the convergence quantity. :param r: radius in angles :param theta_E: Einstein radius :param e1: eccentricity component :param e2: eccentricity component :return: density """ rho0 = self.theta2rho(theta_E) return self.density(r, rho0) @staticmethod def density(r, rho0, e1=0, e2=0): """ computes the density :param r: radius in angles :param rho0: density at angle=1 :return: density at r """ rho = rho0 / r**2 return rho @staticmethod def density_2d(x, y, rho0, e1=0, e2=0, center_x=0, center_y=0): """ projected density :param x: :param y: :param rho0: :param e1: :param e2: :param center_x: :param center_y: :return: """ x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) sigma = np.pi * rho0 / r return sigma
class TestSIE(object): """ tests the Gaussian methods """ def setup(self): from lenstronomy.LensModel.Profiles.sie import SIE from lenstronomy.LensModel.Profiles.epl import EPL from lenstronomy.LensModel.Profiles.nie import NIE self.sie = SIE(NIE=False) self.sie_nie = SIE(NIE=True) self.epl = EPL() self.nie = NIE() def test_function(self): x = np.array([1]) y = np.array([2]) theta_E = 1. q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.sie.function(x, y, theta_E, e1, e2) gamma = 2 values_spemd = self.epl.function(x, y, theta_E, gamma, e1, e2) assert values == values_spemd values_nie = self.sie_nie.function(x, y, theta_E, e1, e2) s_scale = 0.0000001 values_spemd = self.nie.function(x, y, theta_E, e1, e2, s_scale) npt.assert_almost_equal(values_nie, values_spemd, decimal=6) def test_derivatives(self): x = np.array([1]) y = np.array([2]) theta_E = 1. q = 0.7 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.sie.derivatives(x, y, theta_E, e1, e2) gamma = 2 values_spemd = self.epl.derivatives(x, y, theta_E, gamma, e1, e2) assert values == values_spemd values = self.sie_nie.derivatives(x, y, theta_E, e1, e2) s_scale = 0.0000001 values_spemd = self.nie.derivatives(x, y, theta_E, e1, e2, s_scale) npt.assert_almost_equal(values, values_spemd, decimal=6) def test_hessian(self): x = np.array([1]) y = np.array([2]) theta_E = 1. q = 0.7 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.sie.hessian(x, y, theta_E, e1, e2) gamma = 2 values_spemd = self.epl.hessian(x, y, theta_E, gamma, e1, e2) assert values[0] == values_spemd[0] values = self.sie_nie.hessian(x, y, theta_E, e1, e2) s_scale = 0.0000001 values_spemd = self.nie.hessian(x, y, theta_E, e1, e2, s_scale) npt.assert_almost_equal(values, values_spemd, decimal=5)
class TestEPL(object): """ tests the Gaussian methods """ def setup(self): from lenstronomy.LensModel.Profiles.epl import EPL self.EPL = EPL() from lenstronomy.LensModel.Profiles.nie import NIE self.NIE = NIE() def test_function(self): phi_E = 1. t = 1. q = 0.999 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, e1, e2, t) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) q = 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, e1, e2, t) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) q = 0.4 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, e1, e2, t) values_nie = self.NIE.function(x, y, phi_E, e1, e2, 0.) delta_f = values[0] - values[1] delta_f_nie = values_nie[0] - values_nie[1] npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5) def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. t = 1. q = 1. phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, e1, e2, t) f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) q = 0.7 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, e1, e2, t) f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) def test_hessian(self): x = np.array([1.]) y = np.array([2.]) phi_E = 1. t = 1. q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_yy, f_xy = self.EPL.hessian(x, y, phi_E, e1, e2, t) f_xx_nie, f_yy_nie, f_xy_nie = self.NIE.hessian( x, y, phi_E, e1, e2, 0.) npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4) def test_static(self): x, y = 1., 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'theta_E': 1., 't': 1.5, 'e1': e1, 'e2': e2} f_ = self.EPL.function(x, y, **kwargs_lens) self.EPL.set_static(**kwargs_lens) f_static = self.EPL.function(x, y, **kwargs_lens) npt.assert_almost_equal(f_, f_static, decimal=8) self.EPL.set_dynamic() kwargs_lens = {'theta_E': 2., 't': 0.5, 'e1': e1, 'e2': e2} f_dyn = self.EPL.function(x, y, **kwargs_lens) assert f_dyn != f_static
class TestEPL_numba(object): """ tests the Gaussian methods """ def setup(self): from lenstronomy.LensModel.Profiles.epl import EPL self.EPL = EPL() from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba self.EPL_numba = EPL_numba() def test_function(self): phi_E = 1. gamma = 2. q = 0.999 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nb = self.EPL_numba.function(x, y, phi_E, gamma, e1, e2) delta_f = values[0] - values[1] delta_f_nb = values_nb[0] - values_nb[1] npt.assert_almost_equal(delta_f, delta_f_nb, decimal=10) q = 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nb = self.EPL_numba.function(x, y, phi_E, gamma, e1, e2) delta_f = values[0] - values[1] delta_f_nb = values_nb[0] - values_nb[1] npt.assert_almost_equal(delta_f, delta_f_nb, decimal=10) q = 0.4 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = np.array([1., 2]) y = np.array([2, 0]) values = self.EPL.function(x, y, phi_E, gamma, e1, e2) values_nb = self.EPL_numba.function(x, y, phi_E, gamma, e1, e2) delta_f = values[0] - values[1] delta_f_nb = values_nb[0] - values_nb[1] npt.assert_almost_equal(delta_f, delta_f_nb, decimal=10) def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.8 q = 1. phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) f_x_nb, f_y_nb = self.EPL_numba.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, f_x_nb, decimal=10) npt.assert_almost_equal(f_y, f_y_nb, decimal=10) q = 0.7 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) f_x_nb, f_y_nb = self.EPL_numba.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, f_x_nb, decimal=10) npt.assert_almost_equal(f_y, f_y_nb, decimal=10) def test_hessian(self): x = np.array([1.]) y = np.array([2.]) phi_E = 1. gamma = 2.2 q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_xy, f_yx, f_yy = self.EPL.hessian(x, y, phi_E, gamma, e1, e2) f_xx_nb, f_xy_nb, f_yx_nb, f_yy_nb = self.EPL_numba.hessian( x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_xx, f_xx_nb, decimal=10) npt.assert_almost_equal(f_yy, f_yy_nb, decimal=10) npt.assert_almost_equal(f_xy, f_xy_nb, decimal=10) def test_regularization(self): phi_E = 1. gamma = 2. q = 1. phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) x = 0. y = 0. f_x, f_y = self.EPL_numba.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, 0.) npt.assert_almost_equal(f_y, 0.) x = 0. y = 0. f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, 0.) npt.assert_almost_equal(f_y, 0.) x = 0. y = 0. f_x, f_y = self.EPL.derivatives(x, y, phi_E, gamma + 0.1, e1, e2) npt.assert_almost_equal(f_x, 0.) npt.assert_almost_equal(f_y, 0.) x = 0. y = 0. f = self.EPL_numba.function(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f, 0.) x = 0. y = 0. f_xx, f_xy, f_yx, f_yy = self.EPL_numba.hessian( x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_xx, 1e10, decimal=10) npt.assert_almost_equal(f_yy, 0, decimal=10) npt.assert_almost_equal( f_xy, 0, decimal=5) # floating point cancellation, so less precise # Magnification: npt.assert_almost_equal(1 / ((1 - f_xx) * (1 - f_yy) - f_xy**2), 0., decimal=10)
class SIE(LensProfileBase): """ class for singular isothermal ellipsoid (SIS with ellipticity) """ param_names = ['theta_E', 'e1', 'e2', 'center_x', 'center_y'] lower_limit_default = { 'theta_E': 0, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100 } upper_limit_default = { 'theta_E': 100, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100 } def __init__(self, NIE=True): """ :param NIE: bool, if True, is using the NIE analytic model. Otherwise it uses PEMD with gamma=2 from fastell4py """ self._nie = NIE if NIE: from lenstronomy.LensModel.Profiles.nie import NIE self.profile = NIE() else: from lenstronomy.LensModel.Profiles.epl import EPL self.profile = EPL() self._s_scale = 0.0000000001 self._gamma = 2 super(SIE, self).__init__() def function(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: :param y: :param theta_E: :param q: :param phi_G: :param center_x: :param center_y: :return: """ if self._nie: return self.profile.function(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.function(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) def derivatives(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: :param y: :param theta_E: :param q: :param phi_G: :param center_x: :param center_y: :return: """ if self._nie: return self.profile.derivatives(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.derivatives(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) def hessian(self, x, y, theta_E, e1, e2, center_x=0, center_y=0): """ :param x: :param y: :param theta_E: :param q: :param phi_G: :param center_x: :param center_y: :return: """ if self._nie: return self.profile.hessian(x, y, theta_E, e1, e2, self._s_scale, center_x, center_y) else: return self.profile.hessian(x, y, theta_E, self._gamma, e1, e2, center_x, center_y) @staticmethod def theta2rho(theta_E): """ converts projected density parameter (in units of deflection) into 3d density parameter :param theta_E: :return: """ fac1 = np.pi * 2 rho0 = theta_E / fac1 return rho0 @staticmethod def mass_3d(r, rho0, e1=0, e2=0): """ mass enclosed a 3d sphere or radius r :param r: radius in angular units :param rho0: density at angle=1 :return: mass in angular units """ mass_3d = 4 * np.pi * rho0 * r return mass_3d def mass_3d_lens(self, r, theta_E, e1=0, e2=0): """ mass enclosed a 3d sphere or radius r given a lens parameterization with angular units :param r: radius in angular units :param theta_E: Einstein radius :return: mass in angular units """ rho0 = self.theta2rho(theta_E) return self.mass_3d(r, rho0) def mass_2d(self, r, rho0, e1=0, e2=0): """ mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param a: :param s: :return: """ alpha = np.pi * np.pi * 2 * rho0 mass_2d = alpha * r return mass_2d def mass_2d_lens(self, r, theta_E, e1=0, e2=0): """ :param r: :param theta_E: :return: """ rho0 = self.theta2rho(theta_E) return self.mass_2d(r, rho0) def grav_pot(self, x, y, rho0, e1=0, e2=0, center_x=0, center_y=0): """ gravitational potential (modulo 4 pi G and rho0 in appropriate units) :param x: :param y: :param rho0: :param a: :param s: :param center_x: :param center_y: :return: """ x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) mass_3d = self.mass_3d(r, rho0) pot = mass_3d / r return pot def density_lens(self, r, theta_E, e1=0, e2=0): """ computes the density at 3d radius r given lens model parameterization. The integral in the LOS projection of this quantity results in the convergence quantity. :param r: radius in angles :param theta_E: Einstein radius :param e1: eccentricity component :param e2: eccentricity component :return: density """ rho0 = self.theta2rho(theta_E) return self.density(r, rho0) @staticmethod def density(r, rho0, e1=0, e2=0): """ computes the density :param r: radius in angles :param rho0: density at angle=1 :return: density at r """ rho = rho0 / r**2 return rho @staticmethod def density_2d(x, y, rho0, e1=0, e2=0, center_x=0, center_y=0): """ projected density :param x: :param y: :param rho0: :param center_x: :param center_y: :return: """ x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) sigma = np.pi * rho0 / r return sigma