Example #1
0
class GaussianEllipsePotential(LensProfileBase):
    """
    this class contains functions to evaluate a Gaussian function and calculates its derivative and hessian matrix
    with ellipticity in the convergence

    the calculation follows Glenn van de Ven et al. 2009

    """
    param_names = ['amp', 'sigma', 'e1', 'e2', 'center_x', 'center_y']
    lower_limit_default = {
        'amp': 0,
        'sigma': 0,
        'e1': -0.5,
        'e2': -0.5,
        'center_x': -100,
        'center_y': -100
    }
    upper_limit_default = {
        'amp': 100,
        'sigma': 100,
        'e1': 0.5,
        'e2': 0.5,
        'center_x': 100,
        'center_y': 100
    }

    def __init__(self):
        self.spherical = GaussianKappa()
        self._diff = 0.000001
        super(GaussianEllipsePotential, self).__init__()

    def function(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
        """
        returns Gaussian
        """

        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = abs(1 - q)
        x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
        f_ = self.spherical.function(x_, y_, amp=amp, sigma=sigma)
        return f_

    def derivatives(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
        """
        returns df/dx and df/dy of the function
        """
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = abs(1 - q)
        x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)

        f_x_prim, f_y_prim = self.spherical.derivatives(x_,
                                                        y_,
                                                        amp=amp,
                                                        sigma=sigma)
        f_x_prim *= np.sqrt(1 - e)
        f_y_prim *= np.sqrt(1 + e)
        f_x = cos_phi * f_x_prim - sin_phi * f_y_prim
        f_y = sin_phi * f_x_prim + cos_phi * f_y_prim
        return f_x, f_y

    def hessian(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
        """
        returns Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2
        """
        alpha_ra, alpha_dec = self.derivatives(x, y, amp, sigma, e1, e2,
                                               center_x, center_y)
        diff = self._diff
        alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, amp, sigma,
                                                     e1, e2, center_x,
                                                     center_y)
        alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, amp, sigma,
                                                     e1, e2, center_x,
                                                     center_y)

        f_xx = (alpha_ra_dx - alpha_ra) / diff
        f_xy = (alpha_ra_dy - alpha_ra) / diff
        f_yx = (alpha_dec_dx - alpha_dec) / diff
        f_yy = (alpha_dec_dy - alpha_dec) / diff
        return f_xx, f_xy, f_yx, f_yy

    def density(self, r, amp, sigma, e1, e2):
        """

        :param r:
        :param amp:
        :param sigma:
        :return:
        """
        return self.spherical.density(r, amp, sigma)

    def density_2d(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):
        """

        :param R:
        :param am:
        :param sigma_x:
        :param sigma_y:
        :return:
        """
        return self.spherical.density_2d(x, y, amp, sigma, center_x, center_y)

    def mass_2d(self, R, amp, sigma, e1, e2):
        """

        :param R:
        :param amp:
        :param sigma_x:
        :param sigma_y:
        :return:
        """
        return self.spherical.mass_2d(R, amp, sigma)

    def mass_3d(self, R, amp, sigma, e1, e2):
        """

        :param R:
        :param amp:
        :param sigma:
        :param e1:
        :param e2:
        :return:
        """
        return self.spherical.mass_3d(R, amp, sigma)

    def mass_3d_lens(self, R, amp, sigma, e1, e2):
        """

        :param R:
        :param amp:
        :param sigma:
        :param e1:
        :param e2:
        :return:
        """
        return self.spherical.mass_3d_lens(R, amp, sigma)

    def mass_2d_lens(self, R, amp, sigma, e1, e2):
        """

        :param R:
        :param amp:
        :param sigma_x:
        :param sigma_y:
        :return:
        """
        return self.spherical.mass_2d_lens(R, amp, sigma)
Example #2
0
class TestGaussianKappaPot(object):
    """
    test the Gaussian with Gaussian kappa
    """
    def setup(self):
        self.gaussian_kappa = GaussianKappa()
        self.ellipse = GaussianEllipsePotential()

    def test_function(self):
        x = 1
        y = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_ = self.ellipse.function(x, y, amp, sigma, e1, e2)
        f_sphere = self.gaussian_kappa.function(x, y, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_, f_sphere, decimal=8)

    def test_derivatives(self):
        x = 1
        y = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_x, f_y = self.ellipse.derivatives(x, y, amp, sigma, e1, e2)
        f_x_sphere, f_y_sphere = self.gaussian_kappa.derivatives(x, y, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_x, f_x_sphere, decimal=8)
        npt.assert_almost_equal(f_y, f_y_sphere, decimal=8)

    def test_hessian(self):
        x = 1
        y = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_xx, f_xy, f_yx, f_yy = self.ellipse.hessian(x, y, amp, sigma, e1, e2)
        f_xx_sphere, f_xy_sphere, f_yx_sphere, f_yy_sphere = self.gaussian_kappa.hessian(x, y, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_xx, f_xx_sphere, decimal=5)
        npt.assert_almost_equal(f_yy, f_yy_sphere, decimal=5)
        npt.assert_almost_equal(f_xy, f_xy_sphere, decimal=5)
        npt.assert_almost_equal(f_xy, f_yx, decimal=8)

    def test_density_2d(self):
        x = 1
        y = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_ = self.ellipse.density_2d(x, y, amp, sigma, e1, e2)
        f_sphere = self.gaussian_kappa.density_2d(x, y, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_, f_sphere, decimal=8)

    def test_mass_2d(self):
        r = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_ = self.ellipse.mass_2d(r, amp, sigma, e1, e2)
        f_sphere = self.gaussian_kappa.mass_2d(r, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_, f_sphere, decimal=8)

    def test_mass_2d_lens(self):
        r = 1
        e1, e2 = 0, 0
        sigma = 1
        amp = 1
        f_ = self.ellipse.mass_2d_lens(r, amp, sigma, e1, e2)
        f_sphere = self.gaussian_kappa.mass_2d_lens(r, amp=amp, sigma=sigma)
        npt.assert_almost_equal(f_, f_sphere, decimal=8)