Example #1
0
class Hernquist(object):
    """
    class for pseudo Jaffe lens light (2d projected light/mass distribution
    """
    def __init__(self):
        from lenstronomy.LensModel.Profiles.hernquist import Hernquist as Hernquist_lens
        self.lens = Hernquist_lens()
        self.param_names = ['amp', 'Rs', 'center_x', 'center_y']
        self.lower_limit_default = {'amp': 0, 'Rs': 0, 'center_x': -100, 'center_y': -100}
        self.upper_limit_default = {'amp': 100, 'Rs': 100, 'center_x': 100, 'center_y': 100}

    def function(self, x, y, amp, Rs, center_x=0, center_y=0):
        """

        :param x:
        :param y:
        :param amp:
        :param Rs: scale radius: half-light radius = Rs / 0.551
        :param center_x:
        :param center_y:
        :return:
        """
        rho0 = self.lens.sigma2rho(amp, Rs)
        return self.lens.density_2d(x, y, rho0, Rs, center_x, center_y)

    def light_3d(self, r, amp, Rs):
        """

        :param r:
        :param amp:
        :param Rs:
        :return:
        """
        rho0 = self.lens.sigma2rho(amp, Rs)
        return self.lens.density(r, rho0, Rs)
Example #2
0
class Hernquist(object):
    """
    class for pseudo Jaffe lens light (2d projected light/mass distribution
    """
    def __init__(self):
        from lenstronomy.LensModel.Profiles.hernquist import Hernquist as Hernquist_lens
        self.lens = Hernquist_lens()

    def function(self, x, y, sigma0, Rs, center_x=0, center_y=0):
        """

        :param x:
        :param y:
        :param sigma0:
        :param a:
        :param s:
        :param center_x:
        :param center_y:
        :return:
        """
        rho0 = self.lens.sigma2rho(sigma0, Rs)
        return self.lens.density_2d(x, y, rho0, Rs, center_x, center_y)

    def light_3d(self, r, sigma0, Rs):
        """

        :param y:
        :param sigma0:
        :param Rs:
        :param center_x:
        :param center_y:
        :return:
        """
        rho0 = self.lens.sigma2rho(sigma0, Rs)
        return self.lens.density(r, rho0, Rs)
Example #3
0
class Hernquist_Ellipse(LensProfileBase):
    """
    this class contains functions for the elliptical Hernquist profile. Ellipticity is defined in the potential.


    """
    param_names = ['sigma0', 'Rs', 'e1', 'e2', 'center_x', 'center_y']
    lower_limit_default = {
        'sigma0': 0,
        'Rs': 0,
        'e1': -0.5,
        'e2': -0.5,
        'center_x': -100,
        'center_y': -100
    }
    upper_limit_default = {
        'sigma0': 100,
        'Rs': 100,
        'e1': 0.5,
        'e2': 0.5,
        'center_x': 100,
        'center_y': 100
    }

    def __init__(self):
        self.spherical = Hernquist()
        self._diff = 0.0000000001
        super(Hernquist_Ellipse, self).__init__()

    def function(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):
        """
        returns double integral of NFW profile
        """
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = abs(1 - q)
        x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
        f_ = self.spherical.function(x_, y_, sigma0, Rs)
        return f_

    def derivatives(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):
        """
        returns df/dx and df/dy of the function (integral of NFW)
        """
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)
        x_shift = x - center_x
        y_shift = y - center_y
        cos_phi = np.cos(phi_G)
        sin_phi = np.sin(phi_G)
        e = abs(1 - q)
        x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
        y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)

        f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Rs)
        f_x_prim *= np.sqrt(1 - e)
        f_y_prim *= np.sqrt(1 + e)
        f_x = cos_phi * f_x_prim - sin_phi * f_y_prim
        f_y = sin_phi * f_x_prim + cos_phi * f_y_prim
        return f_x, f_y

    def hessian(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):
        """
        returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy
        """
        alpha_ra, alpha_dec = self.derivatives(x, y, sigma0, Rs, e1, e2,
                                               center_x, center_y)
        diff = self._diff
        alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, sigma0, Rs,
                                                     e1, e2, center_x,
                                                     center_y)
        alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, sigma0, Rs,
                                                     e1, e2, center_x,
                                                     center_y)

        f_xx = (alpha_ra_dx - alpha_ra) / diff
        f_xy = (alpha_ra_dy - alpha_ra) / diff
        #f_yx = (alpha_dec_dx - alpha_dec)/diff
        f_yy = (alpha_dec_dy - alpha_dec) / diff
        return f_xx, f_yy, f_xy

    def density(self, r, rho0, Rs, e1=0, e2=0):
        """
        computes the 3-d density

        :param r: 3-d radius
        :param rho0: density normalization
        :param Rs: Hernquist radius
        :return: density at radius r
        """
        return self.spherical.density(r, rho0, Rs)

    def density_lens(self, r, sigma0, Rs, e1=0, e2=0):
        """
        Density as a function of 3d radius in lensing parameters
        This function converts the lensing definition sigma0 into the 3d density

        :param r: 3d radius
        :param sigma0: rho0 * Rs (units of projected density)
        :param Rs: Hernquist radius
        :return: enclosed mass in 3d
        """
        return self.spherical.density_lens(r, sigma0, Rs)

    def density_2d(self, x, y, rho0, Rs, e1=0, e2=0, center_x=0, center_y=0):
        """
        projected density along the line of sight at coordinate (x, y)

        :param x: x-coordinate
        :param y: y-coordinate
        :param rho0: density normalization
        :param Rs: Hernquist radius
        :param center_x: x-center of the profile
        :param center_y: y-center of the profile
        :return: projected density
        """
        return self.spherical.density_2d(x, y, rho0, Rs, center_x, center_y)

    def mass_2d_lens(self, r, sigma0, Rs, e1=0, e2=0):
        """
        mass enclosed projected 2d sphere of radius r
        Same as mass_2d but with input normalization in units of projected density
        :param r: projected radius
        :param sigma0: rho0 * Rs (units of projected density)
        :param Rs: Hernquist radius
        :return: mass enclosed 2d projected radius
        """
        return self.spherical.mass_2d_lens(r, sigma0, Rs)

    def mass_2d(self, r, rho0, Rs, e1=0, e2=0):
        """
        mass enclosed projected 2d sphere of radius r

        :param r: projected radius
        :param rho0: density normalization
        :param Rs: Hernquist radius
        :return: mass enclosed 2d projected radius
        """
        return self.spherical.mass_2d(r, rho0, Rs)

    def mass_3d(self, r, rho0, Rs, e1=0, e2=0):
        """
        mass enclosed a 3d sphere or radius r

        :param r: 3-d radius within the mass is integrated (same distance units as density definition)
        :param rho0: density normalization
        :param Rs: Hernquist radius
        :return: enclosed mass
        """
        return self.spherical.mass_3d(r, rho0, Rs)