def test_spemd(self): from lenstronomy.LensModel.Profiles.spep import SPEP from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa spep = SPEP() mge_kappa = MultiGaussianKappa() n_comp = 8 theta_E = 1.41 kwargs = {'theta_E': theta_E, 'e1': 0, 'e2': 0, 'gamma': 1.61} rs = np.logspace(-2., 1., 100) * theta_E f_xx, f_yy, f_xy = spep.hessian(rs, 0, **kwargs) kappa = 1 / 2. * (f_xx + f_yy) amplitudes, sigmas, norm = mge.mge_1d(rs, kappa, N=n_comp) kappa_mge = self.multiGaussian.function(rs, np.zeros_like(rs), amp=amplitudes, sigma=sigmas) f_xx_mge, f_yy_mge, f_xy_mge = mge_kappa.hessian(rs, np.zeros_like(rs), amp=amplitudes, sigma=sigmas) for i in range(0, 80): npt.assert_almost_equal(kappa_mge[i], 1. / 2 * (f_xx_mge[i] + f_yy_mge[i]), decimal=1) npt.assert_almost_equal((kappa[i] - kappa_mge[i]) / kappa[i], 0, decimal=1) f_ = spep.function(theta_E, 0, **kwargs) f_mge = mge_kappa.function(theta_E, 0, sigma=sigmas, amp=amplitudes) npt.assert_almost_equal(f_mge / f_, 1, decimal=2)
class TestNIE_POTENTIAL(object): """ tests the NIE_POTENTIAL profile for different rotations """ def setup(self): self.nie_potential = NIE_POTENTIAL() self.spep = SPEP() def test_function(self): y = np.array([1., 2]) x = np.array([0., 0.]) theta_E = 1. theta_c = 0. ############# # no rotation ############# e1, e2 = 0.05, 0.0 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the non-rotated output values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2) delta_pot = values[1] - values[0] values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) delta_pot_spep = values[1] - values[0] npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4) ############ # rotation 1 ############ e1, e2 = 0.05, 0.1 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2) delta_pot = values[1] - values[0] values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) delta_pot_spep = values[1] - values[0] npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4) ############ # rotation 2 ############ e1, e2 = 0.15, 0.13 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2) delta_pot = values[1] - values[0] values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) delta_pot_spep = values[1] - values[0] npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4) def test_derivatives(self): x = np.array([1]) y = np.array([2]) theta_E = 1. theta_c = 0. ############# # no rotation ############# e1, e2 = 0.05, 0.0 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the non-rotated output f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1, e2) f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) ############ # rotation 1 ############ e1, e2 = 0.05, 0.1 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1, e2) f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) ############ # rotation 2 ############ e1, e2 = 0.15, 0.13 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1, e2) f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_x, f_x_nie, decimal=4) npt.assert_almost_equal(f_y, f_y_nie, decimal=4) def test_hessian(self): x = np.array([1]) y = np.array([2]) theta_E = 1. theta_c = 0. ############# # no rotation ############# e1, e2 = 0.05, 0.0 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the non-rotated output f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian( x, y, theta_E, theta_c, e1, e2) f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian( x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4) npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4) ############ # rotation 1 ############ e1, e2 = 0.05, 0.1 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian( x, y, theta_E, theta_c, e1, e2) f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian( x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4) npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4) ############ # rotation 2 ############ e1, e2 = 0.15, 0.13 eps = np.sqrt(e1**2 + e2**2) phi_G, q = param_util.ellipticity2phi_q(e1, e2) # map the nie_potential input to the spep input gamma_spep = 2. q_spep = np.sqrt(q) e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep) theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q) theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) / (1 + eps))**0.25 # compare the rotated output f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian( x, y, theta_E, theta_c, e1, e2) f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian( x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep) npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4) npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4) def test_static(self): x, y = 1., 1. phi_G, q = 0.3, 0.8 e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) kwargs_lens = {'theta_E': 1., 'theta_c': .1, 'e1': e1, 'e2': e2} f_ = self.nie_potential.function(x, y, **kwargs_lens) self.nie_potential.set_static(**kwargs_lens) f_static = self.nie_potential.function(x, y, **kwargs_lens) npt.assert_almost_equal(f_, f_static, decimal=8) self.nie_potential.set_dynamic() kwargs_lens = {'theta_E': 2., 'theta_c': .1, 'e1': e1, 'e2': e2} f_dyn = self.nie_potential.function(x, y, **kwargs_lens) assert f_dyn != f_static
class TestSPEP(object): """ tests the Gaussian methods """ def setup(self): self.SPEP = SPEP() self.SIE = SIE() def test_function(self): x = 1 y = 2 phi_E = 1. gamma = 1.9 q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) values = self.SPEP.function(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(values, 2.104213947346917, decimal=7) x = np.array([0]) y = np.array([0]) values = self.SPEP.function(x, y, phi_E, gamma, e1, e2) assert values[0] == 0 x = np.array([2, 3, 4]) y = np.array([1, 1, 1]) values = self.SPEP.function(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(values[0], 2.1709510681181285, decimal=7) npt.assert_almost_equal(values[1], 3.2293397784259108, decimal=7) npt.assert_almost_equal(values[2], 4.3624056004556948, decimal=7) def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.9 q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x[0], 0.43989645846696634, decimal=7) npt.assert_almost_equal(f_y[0], 0.93736944180732129, decimal=7) x = np.array([0]) y = np.array([0]) f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2) assert f_x[0] == 0 assert f_y[0] == 0 x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) values = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(values[0][0], 0.43989645846696634, decimal=7) npt.assert_almost_equal(values[1][0], 0.93736944180732129, decimal=7) npt.assert_almost_equal(values[0][1], 1.1029501948308649, decimal=7) npt.assert_almost_equal(values[1][1], 0.24342317177590794, decimal=7) x = 1 y = 2 phi_E = 1. gamma = 1.9 q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_x, 0.43989645846696634, decimal=7) npt.assert_almost_equal(f_y, 0.93736944180732129, decimal=7) x = 0 y = 0 f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2) assert f_x == 0 assert f_y == 0 def test_hessian(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.9 q = 0.9 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_yy,f_xy = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(f_xx[0], 0.46312881977317422, decimal=7) npt.assert_almost_equal(f_yy[0], 0.15165326557198552, decimal=7) npt.assert_almost_equal(f_xy[0], -0.20956958696323871, decimal=7) x = np.array([1,3,4]) y = np.array([2,1,1]) values = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2) npt.assert_almost_equal(values[0][0], 0.46312881977317422, decimal=7) npt.assert_almost_equal(values[1][0], 0.15165326557198552, decimal=7) npt.assert_almost_equal(values[2][0], -0.20956958696323871, decimal=7) npt.assert_almost_equal(values[0][1], 0.070999592014527796, decimal=7) npt.assert_almost_equal(values[1][1], 0.33245358685908111, decimal=7) npt.assert_almost_equal(values[2][1], -0.10270375656049677, decimal=7) def test_spep_sie_conventions(self): x = np.array([1., 2., 0.]) y = np.array([2, 1., 1.]) phi_E = 1. gamma = 2 q = 0.9999 phi_G = 1. e1, e2 = param_util.phi_q2_ellipticity(phi_G, q) f_xx, f_yy, f_xy = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2) f_xx_sie, f_yy_sie, f_xy_sie = self.SIE.hessian(x, y, phi_E, e1, e2) npt.assert_almost_equal(f_xx, f_xx_sie, decimal=4) npt.assert_almost_equal(f_yy, f_yy_sie, decimal=4) npt.assert_almost_equal(f_xy, f_xy_sie, decimal=4)
class TestSPEP(object): """ tests the Gaussian methods """ def setup(self): self.SPEP = SPEP() self.SPP = SPP() self.SIS = SIS() def test_function(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.9 q = 1 phi_G = 0. E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q)) values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G) values_spp = self.SPP.function(x, y, E, gamma) assert values_spep[0] == values_spp[0] x = np.array([0]) y = np.array([0]) values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G) values_spp = self.SPP.function(x, y, E, gamma) assert values_spep[0] == values_spp[0] x = np.array([2, 3, 4]) y = np.array([1, 1, 1]) values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G) values_spp = self.SPP.function(x, y, E, gamma) assert values_spep[0] == values_spp[0] assert values_spep[1] == values_spp[1] assert values_spep[2] == values_spp[2] def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.9 q = 1 phi_G = 0. E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q)) f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G) f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma) assert f_x_spep[0] == f_x_spp[0] assert f_y_spep[0] == f_y_spp[0] x = np.array([0]) y = np.array([0]) f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G) f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma) assert f_x_spep[0] == f_x_spp[0] assert f_y_spep[0] == f_y_spp[0] x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G) f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma) assert f_x_spep[0] == f_x_spp[0] assert f_y_spep[0] == f_y_spp[0] assert f_x_spep[1] == f_x_spp[1] assert f_y_spep[1] == f_y_spp[1] assert f_x_spep[2] == f_x_spp[2] assert f_y_spep[2] == f_y_spp[2] def test_hessian(self): x = np.array([1]) y = np.array([2]) phi_E = 1. gamma = 1.9 q = 1. phi_G = 0. E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q)) f_xx, f_yy, f_xy = self.SPEP.hessian(x, y, E, gamma, q, phi_G) f_xx_spep, f_yy_spep, f_xy_spep = self.SPEP.hessian( x, y, E, gamma, q, phi_G) f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, E, gamma) assert f_xx_spep[0] == f_xx_spp[0] assert f_yy_spep[0] == f_yy_spp[0] assert f_xy_spep[0] == f_xy_spp[0] x = np.array([1, 3, 4]) y = np.array([2, 1, 1]) f_xx_spep, f_yy_spep, f_xy_spep = self.SPEP.hessian( x, y, E, gamma, q, phi_G) f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, E, gamma) assert f_xx_spep[0] == f_xx_spp[0] assert f_yy_spep[0] == f_yy_spp[0] assert f_xy_spep[0] == f_xy_spp[0] assert f_xx_spep[1] == f_xx_spp[1] assert f_yy_spep[1] == f_yy_spp[1] assert f_xy_spep[1] == f_xy_spp[1] assert f_xx_spep[2] == f_xx_spp[2] assert f_yy_spep[2] == f_yy_spp[2] assert f_xy_spep[2] == f_xy_spp[2] def test_compare_sis(self): x = np.array([1]) y = np.array([2]) theta_E = 1. gamma = 2. f_sis = self.SIS.function(x, y, theta_E) f_spp = self.SPP.function(x, y, theta_E, gamma) f_x_sis, f_y_sis = self.SIS.derivatives(x, y, theta_E) f_x_spp, f_y_spp = self.SPP.derivatives(x, y, theta_E, gamma) f_xx_sis, f_yy_sis, f_xy_sis = self.SIS.hessian(x, y, theta_E) f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, theta_E, gamma) npt.assert_almost_equal(f_sis[0], f_spp[0], decimal=7) npt.assert_almost_equal(f_x_sis[0], f_x_spp[0], decimal=7) npt.assert_almost_equal(f_y_sis[0], f_y_spp[0], decimal=7) npt.assert_almost_equal(f_xx_sis[0], f_xx_spp[0], decimal=7) npt.assert_almost_equal(f_yy_sis[0], f_yy_spp[0], decimal=7) npt.assert_almost_equal(f_xy_sis[0], f_xy_spp[0], decimal=7) def test_unit_conversion(self): theta_E = 2. gamma = 2.2 rho0 = self.SPP.theta2rho(theta_E, gamma) theta_E_out = self.SPP.rho2theta(rho0, gamma) assert theta_E == theta_E_out def test_mass_2d_lens(self): r = 1 theta_E = 1 gamma = 2 m_2d = self.SPP.mass_2d_lens(r, theta_E, gamma) npt.assert_almost_equal(m_2d, 3.1415926535897931, decimal=8) def test_grav_pot(self): x, y = 1, 0 rho0 = 1 gamma = 2 grav_pot = self.SPP.grav_pot(x, y, rho0, gamma, center_x=0, center_y=0) npt.assert_almost_equal(grav_pot, 12.566370614359172, decimal=8)