Example #1
0
    'subconf': 01,
    'periodicBC': True,
    'loadlattice_z': '001',
    'alph': 1.0,
    'origin': np.array([0., 0.]),
    'Omk': -1.0,
    'Omg': -1.0,
    'V0_pin_gauss': 0.,
    'V0_spring_gauss': 0.,
    'dcdisorder': False,
    'percolation_density': 0.5,
}

cp = {
    'ksize_frac_arr':
    le.string_sequence_to_numpy_array('0.0:0.01:1.10', dtype=float),
    'omegac':
    np.array([2.25]),
    'regalph':
    np.pi * (11. / 6.),
    'regbeta':
    np.pi * (7. / 6.),
    'reggamma':
    np.pi * 0.5,
    'shape':
    'hexagon',
    'polyT':
    False,
    'poly_offset':
    'none',
    'basis':
args = parser.parse_args()

maindir = '/Users/npmitchell/Dropbox/Soft_Matter/GPU/experiments/'
# Get timestamp for this calculation
print '\n args.datehourmin = ', args.datehourmin
timestr, newdatadir, LOADPARAMS, datadir = le.determine_simulation_timestamp(
    args.datehourmin, maindir)
datadir = maindir + args.seriesdir + '/' + args.LatticeTop
if args.delta_lattice != '0.667':
    datadir += '_delta' + args.delta_lattice.replace('.', 'p')

datadir += '/'

# Series of sizes to run is N array (Narr) or series of other values
if args.NP_load == 0:
    Narr = le.string_sequence_to_numpy_array(args.N, dtype=int)
    doNP = False
else:
    Narr = le.string_sequence_to_numpy_array(args.NP_load, dtype=int)
    doNP = True

ksize_arr = le.string_sequence_to_numpy_array(args.ksize_frac, dtype=float)
print 'Narr = ', Narr
print 'type(Narr) = ', type(Narr)
sysV = np.zeros(len(Narr) * len(ksize_arr), dtype=int)
N_V = np.zeros(len(Narr) * len(ksize_arr), dtype=int)
nuV = np.zeros(len(Narr) * len(ksize_arr), dtype=complex)
ksize_V = np.zeros(len(Narr) * len(ksize_arr), dtype=float)
ksys_sizeV = np.zeros_like(ksize_V)

# parameters
####################################################################################
cprootdir = '/Users/npmitchell/Desktop/test/chern/'

# Grab and prepare directories for both input (datadir) and output (outdir)
if args.seriesdir is not 'none':
    outdir = le.prepdir(cprootdir + args.seriesdir)
    datadir = le.prepdir(args.rootdir + args.seriesdir)
else:
    outdir = le.prepdir(cprootdir)
    datadir = args.rootdir

le.ensure_dir(outdir)

cp = {
    'ksize_frac_arr':
    le.string_sequence_to_numpy_array(args.ksize_frac_array, dtype=float),
    'omegac':
    args.omegac,
    'regalph':
    args.regalph,
    'regbeta':
    args.regbeta,
    'reggamma':
    args.reggamma,
    'shape':
    args.shape,
    'polyT':
    args.polyT,
    'poly_offset':
    args.poly_offset,
    'basis':
Example #4
0
        [ax, axcb] = lat.plot_numbered(axis_off=False)
        plt.show()
        hlat = haldane_lattice_class.HaldaneLattice(lat, lp)
        hlat.load()
        print '\n\n\nhaldane_chern_class: ', hlat.lattice.lp, '\n'
        chern = HaldaneChern(hlat, cp=cp)
        proj = chern.get_projector()
        dists, magproj, evxymag = haldane_chern_functions.characterize_projector(
            proj, chern.haldane_lattice, check=True)

        # plot and save characterization of locality
        network_str = leplt.lt2description(hlat.lp)

        # If args.proj_ind is not specified (negative), then use args.proj_XY to find nearest
        if args.proj_ind < 0:
            xyloc = le.string_sequence_to_numpy_array(args.proj_XY,
                                                      dtype=float)
            print 'xyloc = ', xyloc
            proj_ind = ((lat.xy[:, 0] - xyloc[0])**2 +
                        (lat.xy[:, 1] - xyloc[1])**2).argmin()
            print 'proj_ind = ', proj_ind
        else:
            proj_ind = args.proj_ind
        kpfns.plot_projector_locality_singlept(hlat,
                                               proj_ind,
                                               dists,
                                               magproj,
                                               outdir=None,
                                               network_str=network_str)

        # Save evxyproj as pkl
        evxyproj = np.dstack(
Example #5
0
        'subconf': args.sub_realization_number,
        'periodicBC': args.periodicBC,
        'loadlattice_z': args.loadlattice_z,
        'alph': args.alph,
        'origin': np.array([0., 0.]),
        'Omk': -1.0,
        'Omg': -1.0,
        'V0_pin_gauss': args.V0_pin_gauss,
        'V0_spring_gauss': args.V0_spring_gauss,
        'dcdisorder': dcdisorder,
        'percolation_density': args.percolation_density,
    }

    cp = {
        'ksize_frac_arr':
        le.string_sequence_to_numpy_array(args.ksize_frac_array, dtype=float),
        'omegac':
        args.omegac,
        'regalph':
        args.regalph,
        'regbeta':
        args.regbeta,
        'reggamma':
        args.reggamma,
        'shape':
        args.shape,
        'polyT':
        args.polyT,
        'poly_offset':
        args.poly_offset,
        'basis':