Example #1
0
 def execute_trajectory(self, full_traj, step_viewer=1, interactive=False,
                        max_cart_vel_trans_traj=.05, sim_callback=None):
     # TODO: incorporate other parts of sim_full_traj_maybesim
     if sim_callback is None:
         sim_callback = lambda i: self.step()
     
     traj, dof_inds = full_traj
     
 #     # clip finger joint angles to the binary gripper angles if necessary
 #     for lr in 'lr':
 #         joint_ind = self.robot.GetJoint("%s_gripper_l_finger_joint"%lr).GetDOFIndex()
 #         if joint_ind in dof_inds:
 #             ind = dof_inds.index(joint_ind)
 #             traj[:,ind] = np.minimum(traj[:,ind], get_binary_gripper_angle(True))
 #             traj[:,ind] = np.maximum(traj[:,ind], get_binary_gripper_angle(False))
     
     # in simulation mode, we must make sure to gradually move to the new starting position
     self.robot.SetActiveDOFs(dof_inds)
     curr_vals = self.robot.GetActiveDOFValues()
     transition_traj = np.r_[[curr_vals], [traj[0]]]
     sim_util.unwrap_in_place(transition_traj, dof_inds=dof_inds)
     transition_traj = ropesim.retime_traj(self.robot, dof_inds, transition_traj,
                                           max_cart_vel=max_cart_vel_trans_traj)
     animate_traj.animate_traj(transition_traj, self.robot, restore=False, pause=interactive,
                               callback=sim_callback, step_viewer=step_viewer if self.viewer else 0)
     
     traj[0] = transition_traj[-1]
     sim_util.unwrap_in_place(traj, dof_inds=dof_inds)
     traj = ropesim.retime_traj(self.robot, dof_inds, traj)  # make the trajectory slow enough for the simulation
 
     animate_traj.animate_traj(traj, self.robot, restore=False, pause=interactive,
                               callback=sim_callback, step_viewer=step_viewer if self.viewer else 0)
     if self.viewer and step_viewer:
         self.viewer.Step()
     return True
Example #2
0
def sim_full_traj_maybesim(sim_env, full_traj, animate=False, interactive=False, max_cart_vel_trans_traj=.05):
    def sim_callback(i):
        sim_env.step()

    animate_speed = 20 if animate else 0

    traj, dof_inds = full_traj
    
    # clip finger joint angles to the binary gripper angles if necessary
    for lr in 'lr':
        joint_ind = sim_env.robot.GetJoint("%s_gripper_l_finger_joint"%lr).GetDOFIndex()
        if joint_ind in dof_inds:
            ind = dof_inds.index(joint_ind)
            traj[:,ind] = np.minimum(traj[:,ind], get_binary_gripper_angle(True))
            traj[:,ind] = np.maximum(traj[:,ind], get_binary_gripper_angle(False))
    
    # in simulation mode, we must make sure to gradually move to the new starting position
    sim_env.robot.SetActiveDOFs(dof_inds)
    curr_vals = sim_env.robot.GetActiveDOFValues()
    transition_traj = np.r_[[curr_vals], [traj[0]]]
    unwrap_in_place(transition_traj, dof_inds=dof_inds)
    transition_traj = ropesim.retime_traj(sim_env.robot, dof_inds, transition_traj, max_cart_vel=max_cart_vel_trans_traj)
    animate_traj.animate_traj(transition_traj, sim_env.robot, restore=False, pause=interactive,
        callback=sim_callback, step_viewer=animate_speed)
    
    traj[0] = transition_traj[-1]
    unwrap_in_place(traj, dof_inds=dof_inds)
    traj = ropesim.retime_traj(sim_env.robot, dof_inds, traj) # make the trajectory slow enough for the simulation

    valid_inds = grippers_exceed_rope_length(sim_env, (traj, dof_inds), 0.05)
    min_gripper_dist = [np.inf] # minimum distance between gripper when the rope capsules are too far apart
    def is_rope_pulled_too_tight(i_step):
        if valid_inds is None or valid_inds[i_step]: # gripper is not holding the rope or the grippers are not that far apart
            return True
        rope = sim_env.sim.rope
        trans = rope.GetTranslations()
        hhs = rope.GetHalfHeights()
        rots = rope.GetRotations()
        fwd_pts = (trans + hhs[:,None]*rots[:,:3,0])
        bkwd_pts = (trans - hhs[:,None]*rots[:,:3,0])
        pts_dists = np.apply_along_axis(np.linalg.norm, 1, fwd_pts[:-1] - bkwd_pts[1:])[:,None] # these should all be zero if the rope constraints are satisfied
        if np.any(pts_dists > sim_env.sim.rope_params.radius):
            if i_step == 0:
                return True
            ee_trajs = {}
            for lr in 'lr':
                ee_trajs[lr] = get_ee_traj(sim_env, lr, (traj[i_step-1:i_step+1], dof_inds), ee_link_name_fmt="%s_gripper_l_finger_tip_link")
            min_gripper_dist[0] = min(min_gripper_dist[0], np.linalg.norm(ee_trajs['r'][0,:3,3] - ee_trajs['l'][0,:3,3]))
            grippers_moved_closer = np.linalg.norm(ee_trajs['r'][1,:3,3] - ee_trajs['l'][1,:3,3]) < min_gripper_dist[0]
            return grippers_moved_closer
        return True
    animate_traj.animate_traj(traj, sim_env.robot, restore=False, pause=interactive,
        callback=sim_callback, step_viewer=animate_speed, execute_step_cond=is_rope_pulled_too_tight)
    if min_gripper_dist[0] != np.inf:
        util.yellowprint("Some steps of the trajectory were not executed because the gripper was pulling the rope too tight.")
    if animate:
        sim_env.viewer.Step()
    return True
Example #3
0
    def execute_trajectory(self,
                           full_traj,
                           step_viewer=1,
                           interactive=False,
                           max_cart_vel_trans_traj=.05,
                           sim_callback=None):
        # TODO: incorporate other parts of sim_full_traj_maybesim
        if sim_callback is None:
            sim_callback = lambda i: self.step()

        traj, dof_inds = full_traj

        #     # clip finger joint angles to the binary gripper angles if necessary
        #     for lr in 'lr':
        #         joint_ind = self.robot.GetJoint("%s_gripper_l_finger_joint"%lr).GetDOFIndex()
        #         if joint_ind in dof_inds:
        #             ind = dof_inds.index(joint_ind)
        #             traj[:,ind] = np.minimum(traj[:,ind], get_binary_gripper_angle(True))
        #             traj[:,ind] = np.maximum(traj[:,ind], get_binary_gripper_angle(False))

        # in simulation mode, we must make sure to gradually move to the new starting position
        self.robot.SetActiveDOFs(dof_inds)
        curr_vals = self.robot.GetActiveDOFValues()
        transition_traj = np.r_[[curr_vals], [traj[0]]]
        sim_util.unwrap_in_place(transition_traj, dof_inds=dof_inds)
        transition_traj = ropesim.retime_traj(
            self.robot,
            dof_inds,
            transition_traj,
            max_cart_vel=max_cart_vel_trans_traj)
        animate_traj.animate_traj(
            transition_traj,
            self.robot,
            restore=False,
            pause=interactive,
            callback=sim_callback,
            step_viewer=step_viewer if self.viewer else 0)

        traj[0] = transition_traj[-1]
        sim_util.unwrap_in_place(traj, dof_inds=dof_inds)
        traj = ropesim.retime_traj(
            self.robot, dof_inds,
            traj)  # make the trajectory slow enough for the simulation

        animate_traj.animate_traj(
            traj,
            self.robot,
            restore=False,
            pause=interactive,
            callback=sim_callback,
            step_viewer=step_viewer if self.viewer else 0)
        if self.viewer and step_viewer:
            self.viewer.Step()
        return True