Example #1
0
 def get_problem_from_segment(hr, segment, domain, objects, start_agent_symbols, end_agent_symbols):
     '''
     Infer problem from dataset, human prediction can differ from the goal here, which the robot has to adapt to solve this problem
     '''
     init_pred = hr.get_object_predicates(segment, 0, predicting=False)
     init_pred = [p for p in init_pred if p[1] in objects]
     final_pred = hr.get_object_predicates(segment, segment[2] - segment[1], predicting=False)
     final_pred = [p for p in final_pred if p[1] in objects]
     # resolve human-carry predicate
     for p in final_pred:
         if p[0] == 'human-carry':
             final_pred.remove(p)
             final_pred.append(('on', p[1], 'table'))  # assume on table at the end
     for p in init_pred:
         if p[0] == 'human-carry':
             for pr in final_pred:
                 if p[1] == pr[1]:
                     init_pred.remove(p)
                     init_pred.append(pr)
                     break
     # init problem
     problem = Problem()
     problem.name = str(segment)
     problem.domain_name = domain.name
     problem.objects = {'object': objects,  
                        'location': domain.constants['location']}
     problem.state = frozenset_of_tuples(init_pred).union(start_agent_symbols)
     problem.positive_goals = [frozenset_of_tuples(final_pred).union(end_agent_symbols)]
     problem.negative_goals = [frozenset()]
     return problem
Example #2
0
 def parse_problem(problem_filename):
     tokens = PDDLParser.scan_tokens(problem_filename)
     if tokens.pop(0) == 'define':
         problem = Problem()
         for group in tokens:
             t = group.pop(0)
             if t == 'problem':
                 problem.name = group[0]
             elif t == ':domain':
                 problem.domain_name = group[0]
             elif t == ':requirements':
                 pass  # Ignore requirements in problem, parse them in the domain
             elif t == ':objects':
                 problem.objects = PDDLParser.parse_hierarchy(group, t)
             elif t == ':init':
                 problem.state = frozenset_of_tuples(group)
             elif t == ':goal':
                 positive_goals, negative_goals = PDDLParser.parse_goal(group[0])
                 problem.positive_goals = [frozenset_of_tuples(goal) for goal in positive_goals]
                 problem.negative_goals = [frozenset_of_tuples(goal) for goal in negative_goals]
             else:
                 problem.extensions = PDDLParser.parse_problem_extended(group, t)
     else:
         raise Exception('File ' + problem_filename + ' does not match problem pattern')
     return problem
Example #3
0
 def __init__(self, **kwargs):
     self.name = kwargs.get('name', 'unknown')
     self.parameters = kwargs.get('parameters', [])
     self.positive_preconditions = frozenset_of_tuples(kwargs.get('positive_preconditions', []))
     self.negative_preconditions = frozenset_of_tuples(kwargs.get('negative_preconditions', []))
     self.add_effects = frozenset_of_tuples(kwargs.get('add_effects', []))
     self.del_effects = frozenset_of_tuples(kwargs.get('del_effects', []))
     self.extensions = kwargs.get('extensions', {})
Example #4
0
 def symbolic_state(self):
     symbols = []
     if not self.couplings:
         symbols.append(['free', self.name])
     else:
         for obj in self.couplings:
             symbols.append(['carry', self.name, obj.name])
     return self.init_symbol.union(frozenset_of_tuples(symbols))
Example #5
0
 def parse_action(group):
     name = group.pop(0)
     if type(name) is not str:
         raise Exception('Action without name definition')
     action = Action(name=name)
     while group:
         t = group.pop(0)
         if t == ':parameters':
             action.parameters = PDDLParser.parse_action_parameters(group.pop(0), name)
         elif t == ':precondition':
             positive_preconditions, negative_preconditions = PDDLParser.split_predicates(group.pop(0), name, ' preconditions')
             action.positive_preconditions, action.negative_preconditions = frozenset_of_tuples(positive_preconditions), frozenset_of_tuples(negative_preconditions)
         elif t == ':effect':
             add_effects, del_effects = PDDLParser.split_predicates(group.pop(0), name, ' effects')
             action.add_effects, action.del_effects = frozenset_of_tuples(add_effects), frozenset_of_tuples(del_effects)
         else:
             action.extensions[t] = PDDLParser.parse_action_extended(group.pop(0), t)
     return action
Example #6
0
 def __init__(self, **kwargs):
     super(DurativeAction, self).__init__(**kwargs)
     self.duration = kwargs.get('duration', None) # could be a function or a number
     self.start_positive_preconditions = frozenset_of_tuples(kwargs.get('start_positive_preconditions', []))
     self.start_negative_preconditions = frozenset_of_tuples(kwargs.get('start_negative_preconditions', []))
     self.end_positive_preconditions = frozenset_of_tuples(kwargs.get('end_positive_preconditions', []))
     self.end_negative_preconditions = frozenset_of_tuples(kwargs.get('end_negative_preconditions', []))
     self.start_add_effects = frozenset_of_tuples(kwargs.get('start_add_effects', []))
     self.start_del_effects = frozenset_of_tuples(kwargs.get('start_del_effects', []))
     self.end_add_effects = frozenset_of_tuples(kwargs.get('end_add_effects', []))
     self.end_del_effects = frozenset_of_tuples(kwargs.get('end_del_effects', []))
Example #7
0
 def __init__(self, **kwargs):
     origin = np.asarray(kwargs.get('origin', np.zeros(2)))
     radius = np.asarray(kwargs.get('radius', 0.2))
     self.name = kwargs.get('name', 'robot')
     self.init_symbol = frozenset_of_tuples(kwargs.get('init_symbol', []))
     self.kinematic_map = LinearTranslation(origin)
     self.paths = []
     self.couplings = {
     }  # hold objects. TODO: replace by a kinematic tree later if robot is more complex.
     super(Robot, self).__init__(origin=origin, radius=radius)
Example #8
0
 def parse_durative_action(group):
     name = group.pop(0)
     if type(name) is not str:
         raise Exception('Action without name definition')
     action = DurativeAction(name=name)
     while group:
         t = group.pop(0)
         if t == ':parameters':
             action.parameters = PDDLParser.parse_action_parameters(group.pop(0), name)
         elif t == ':duration':
             action.duration = group.pop(0)[2]
         elif t == ':precondition':
             start_positive, start_negative, end_positive, end_negative = PDDLParser.split_durative_predicates(group.pop(0), name, ' preconditions')
             action.start_positive_preconditions, action.start_negative_preconditions = frozenset_of_tuples(start_positive), frozenset_of_tuples(start_negative)
             action.end_positive_preconditions, action.end_negative_preconditions = frozenset_of_tuples(end_positive), frozenset_of_tuples(end_negative)
         elif t == ':effect':
             start_positive, start_negative, end_positive, end_negative = PDDLParser.split_durative_predicates(group.pop(0), name, ' effects')
             action.start_add_effects, action.start_del_effects = frozenset_of_tuples(start_positive), frozenset_of_tuples(start_negative)
             action.end_add_effects, action.end_del_effects = frozenset_of_tuples(end_positive), frozenset_of_tuples(end_negative)
         else:
             action.extensions[t] = PDDLParser.parse_action_extended(group.pop(0), t)
     return action