# hist.Draw("e") # gPad.Modified() # hist_sim.Draw("esames") #else: # hist_sim.Draw("e") # gPad.Modified() # hist.Draw("esames") # # # # #can.SaveAs("clusterPlots_Pos" + cfg.position + ".pdf") can.SaveAs(name + ".pdf]") lhcbStyle.setLHCbStyle() gStyle.SetOptStat(1) #measurements = [ # ["1431786652", "a_at_0deg", "pos_a_0_deg"] # ,["1432091294", "a_at_10deg", "pos_a_10_deg"] # ,["1432264510", "a_at_20deg", "pos_a_20_deg"] # ,["1432350729", "a_at_30deg", "pos_a_30_deg"] # ,["1432169457", "c_at_0deg", "pos_c_0_deg"] # ,["1432089102", "c_at_10deg", "pos_c_10_deg"] # ,["1432187205", "c_at_20deg", "pos_c_20_deg"] # ,["1432358809", "c_at_30deg", "pos_c_30_deg"] # ] #for measurement in measurements: #
# hist.Draw("e") # gPad.Modified() # hist_sim.Draw("esames") # else: # hist_sim.Draw("e") # gPad.Modified() # hist.Draw("esames") # # # # # can.SaveAs("clusterPlots_Pos" + cfg.position + ".pdf") can.SaveAs(name + ".pdf]") lhcbStyle.setLHCbStyle() gStyle.SetOptStat(1) path = "/home/ttekampe/SciFi/results/DataSimCompare/" data_path = "/home/ttekampe/SciFi/results/clusters/" # t = "6thTry" # t = "6thTry_LSw_125" # t = "6thTry_LSw_125_measured_att" t = "standard_boole" # data_name = "testbeam_data_pos_{position}_at_{angle}_deg_corrected_clusterAnalyis.root" data_name = "testbeam_data_pos_{position}_at_{angle}_deg_corrected_clusterAnalyisexpected_cl_pos.root" # sim_name = "testbeam_simulation_position_{position}_at_{angle}deg_toolFixed_clusterAnalyis.root"
spdbinwidth = (upperlim2 - lowerlim2)/bincount i = int(bpt[0]/bptbinwidth) +1 j = int(spd[0]/spdbinwidth) + 1 r = ROOT.TRandom3(0) o[0] = r.Gaus(Weight.GetBinContent(i, j), Weight.GetBinError(i, j)) brBranch.Fill() nt.SetBranchStatus("*", 1) nt.Write() m.Close() print time.asctime(time.localtime()), "Branch Filled!" c=ROOT.TCanvas() c.Divide(2,1) lhcb.setLHCbStyle() #Extracts the two reweighting variables and their ranges from a CSV file, and then runs the Reweight function above based this information def plotsep(name, source, data, MC, bincount): import csv print time.asctime(time.localtime()), "Extracting information from " + str(source) with open(source, 'rb') as csvfile: i = 0 reader = csv.reader(csvfile, delimiter=',', quotechar='|') v = [] ul = [] ll = [] for row in reader: x = row v.append(x[0])