def create_training_set ( parameters, minvals, maxvals, n_train=200 ):
    """Creates a traning set for a set of parameters specified by 
    ``parameters`` (not actually used, but useful for debugging
    maybe). Parameters are assumed to be uniformly distributed
    between ``minvals`` and ``maxvals``. ``n_train`` input parameter
    sets will be produced, and returned with the actual distributions
    list. The latter is useful to create validation sets.

    Parameters
    -------------
    parameters: list
        A list of parameter names
    minvals: list
        The minimum value of the parameters. Same order as ``parameters``
    maxvals: list
        The maximum value of the parameters. Same order as ``parameters``
    n_train: int
        How many training points to produce

    Returns
    ---------
    The training set and a distributions object that can be used by
    ``create_validation_set``
    """

    distributions = []
    for i,p in enumerate(parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd ( dist=distributions, size=n_train )
    return samples, distributions
def create_training_set(parameters, minvals, maxvals, n_train=200):
    """Creates a traning set for a set of parameters specified by 
    ``parameters`` (not actually used, but useful for debugging
    maybe). Parameters are assumed to be uniformly distributed
    between ``minvals`` and ``maxvals``. ``n_train`` input parameter
    sets will be produced, and returned with the actual distributions
    list. The latter is useful to create validation sets.

    Parameters
    -------------
    parameters: list
        A list of parameter names
    minvals: list
        The minimum value of the parameters. Same order as ``parameters``
    maxvals: list
        The maximum value of the parameters. Same order as ``parameters``
    n_train: int
        How many training points to produce

    Returns
    ---------
    The training set and a distributions object that can be used by
    ``create_validation_set``
    """

    distributions = []
    for i, p in enumerate(parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd(dist=distributions, size=n_train)
    return samples, distributions
Example #3
0
    def __init__(self, rv, tag=None):

        assert hasattr(rv, 'dist'), 'Input must be a  distribution from ' + \
            'the scipy.stats module.'
        self.rv = rv

        # generate the latin-hypercube points
        self._mcpts = lhd(dist=self.rv, size=npts).flatten()
        self.tag = tag
Example #4
0
 def __init__(self, rv, tag=None):
     
     assert hasattr(rv, 'dist'), 'Input must be a  distribution from ' + \
         'the scipy.stats module.'
     self.rv = rv
     
     # generate the latin-hypercube points
     self._mcpts = lhd(dist=self.rv, size=npts).flatten()
     self.tag = tag
def create_training_set(parameters,
                        minvals,
                        maxvals,
                        fix_params=None,
                        n_train=200):
    """Creates a traning set for a set of parameters specified by 
    ``parameters`` (not actually used, but useful for debugging
    maybe). Parameters are assumed to be uniformly distributed
    between ``minvals`` and ``maxvals``. ``n_train`` input parameter
    sets will be produced, and returned with the actual distributions
    list. The latter is useful to create validation sets.
    
    It is often useful to add extra samples for regions which need to
    be carefully evaluated. We do this by adding a `fix_params` parameter
    which should be a dictionary indexing the parameter name, its fixed
    value, and the number of additional samples that will be drawn.

    Parameters
    -------------
    parameters: list
        A list of parameter names
    minvals: list
        The minimum value of the parameters. Same order as ``parameters``
    maxvals: list
        The maximum value of the parameters. Same order as ``parameters``
    fix_params: dictionary
        A diciontary indexed by the parameter name. Each item will have a 
        tuple indicating the fixed value of the parameter, and how many 
        extra LHS samples are required
    n_train: int
        How many training points to produce

    Returns
    ---------
    The training set and a distributions object that can be used by
    ``create_validation_set``
    """

    distributions = []
    for i, p in enumerate(parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd(dist=distributions, size=n_train)

    if fix_params is not None:
        # Extra samples required
        for k, v in fix_params.iteritems():
            # Check whether they key makes sense
            if k not in parameters:
                raise ValueError, "You have specified '%s', which is" %k + \
                    " not in the parameters list"

            extras = fix_parameter_training_set(parameters, minvals, maxvals,
                                                k, v[0], v[1])
            samples = np.r_[samples, extras]

    return samples, distributions
def create_training_set ( parameters, minvals, maxvals, 
                         fix_params=None, n_train=200 ):
    """Creates a traning set for a set of parameters specified by 
    ``parameters`` (not actually used, but useful for debugging
    maybe). Parameters are assumed to be uniformly distributed
    between ``minvals`` and ``maxvals``. ``n_train`` input parameter
    sets will be produced, and returned with the actual distributions
    list. The latter is useful to create validation sets.
    
    It is often useful to add extra samples for regions which need to
    be carefully evaluated. We do this by adding a `fix_params` parameter
    which should be a dictionary indexing the parameter name, its fixed
    value, and the number of additional samples that will be drawn.

    Parameters
    -------------
    parameters: list
        A list of parameter names
    minvals: list
        The minimum value of the parameters. Same order as ``parameters``
    maxvals: list
        The maximum value of the parameters. Same order as ``parameters``
    fix_params: dictionary
        A diciontary indexed by the parameter name. Each item will have a 
        tuple indicating the fixed value of the parameter, and how many 
        extra LHS samples are required
    n_train: int
        How many training points to produce

    Returns
    ---------
    The training set and a distributions object that can be used by
    ``create_validation_set``
    """

    distributions = []
    for i,p in enumerate(parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd ( dist=distributions, size=n_train )
    
    if fix_params is not None:
        # Extra samples required
        for k,v in fix_params.iteritems():
            # Check whether they key makes sense
            if k not in parameters:
                raise ValueError, "You have specified '%s', which is" %k + \
                    " not in the parameters list"
            
            extras = fix_parameter_training_set(parameters, minvals, maxvals,
                                                k, v[0], v[1])
            samples = np.r_[samples, extras]
        
    return samples, distributions
def fix_parameter_training_set(parameters, minvals, maxvals, 
                               fixed_parameter, value, n_train):
    """Produces a set of extra LHS samples where one parameter
    has been fixed to a single value, whereas all other parameters
    take their usual boundaries etc."""
    from copy import deepcopy # groan
    parameters = deepcopy(parameters)
    minvals = deepcopy(minvals)
    maxvals = deepcopy(maxvals)
    fix_param = parameters.index(fixed_parameter)
    reduced_parameters = [p for p in parameters if p != fixed_parameter]
    minvals.pop(fix_param)
    maxvals.pop(fix_param)
    dummy_param = np.ones(n_train)*value
    distributions = []
    for i,p in enumerate(reduced_parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd ( dist=distributions, size=n_train )
    
    extra_array = np.insert(samples, fix_param, dummy_param, axis=1)
    return extra_array
def fix_parameter_training_set(parameters, minvals, maxvals, fixed_parameter,
                               value, n_train):
    """Produces a set of extra LHS samples where one parameter
    has been fixed to a single value, whereas all other parameters
    take their usual boundaries etc."""
    from copy import deepcopy  # groan
    parameters = deepcopy(parameters)
    minvals = deepcopy(minvals)
    maxvals = deepcopy(maxvals)
    fix_param = parameters.index(fixed_parameter)
    reduced_parameters = [p for p in parameters if p != fixed_parameter]
    minvals.pop(fix_param)
    maxvals.pop(fix_param)
    dummy_param = np.ones(n_train) * value
    distributions = []
    for i, p in enumerate(reduced_parameters):
        distributions.append ( ss.uniform ( loc=minvals[i], \
                            scale=(maxvals[i]-minvals[i] ) ) )
    samples = lhd(dist=distributions, size=n_train)

    extra_array = np.insert(samples, fix_param, dummy_param, axis=1)
    return extra_array