def test_padding_cut_audio_mask(self): cut = PaddingCut('cut', duration=2, sampling_rate=16000, use_log_energy=True, num_samples=32000) mask = cut.supervisions_audio_mask() assert mask.sum() == 0
def test_padding_cut_audio_mask(self): cut = PaddingCut('cut', duration=2, sampling_rate=16000, feat_value=LOG_EPSILON, num_samples=32000) mask = cut.supervisions_audio_mask() assert mask.sum() == 0
def test_padding_cut_perturb(): cut = PaddingCut(id='cut', duration=5.75, sampling_rate=16000, feat_value=1e-10, num_samples=92000) cut_sp = cut.perturb_speed(1.1) assert cut_sp.num_samples == 83636 assert cut_sp.duration == 5.22725
def test_padding_cut_perturb(): cut = PaddingCut(id='cut', duration=5.75, sampling_rate=16000, use_log_energy=True, num_samples=92000) cut_sp = cut.perturb_speed(1.1) assert cut_sp.num_samples == 83636 assert cut_sp.duration == 5.22725
def test_padding_cut_features_mask(self): cut = PaddingCut('cut', duration=2, sampling_rate=16000, feat_value=LOG_EPSILON, num_frames=2000, num_features=13) mask = cut.supervisions_feature_mask() assert mask.sum() == 0
def test_padding_cut_features_mask(self): cut = PaddingCut('cut', duration=2, sampling_rate=16000, use_log_energy=True, num_frames=2000, num_features=13) mask = cut.supervisions_feature_mask() assert mask.sum() == 0
def test_resample_padding_cut(): original = PaddingCut(id='cut', duration=5.75, sampling_rate=16000, feat_value=1e-10, num_samples=92000) resampled = original.resample(8000) assert resampled.sampling_rate == 8000 assert resampled.num_samples == original.num_samples / 2 samples = resampled.load_audio() assert samples.shape[1] == resampled.num_samples
def test_padding_cut_perturb_volume(): cut = PaddingCut( id="cut", duration=5.75, sampling_rate=16000, feat_value=1e-10, num_samples=92000, ) cut_vp = cut.perturb_volume(0.125) assert cut_vp.num_samples == cut.num_samples assert cut_vp.duration == cut.duration np.testing.assert_array_almost_equal(cut_vp.load_audio(), cut.load_audio())
def test_padding_cut_reverb_rir(rir): cut = PaddingCut( id="cut", duration=5.75, sampling_rate=16000, feat_value=1e-10, num_samples=92000, ) cut_rvb = cut.reverb_rir(rir_recording=rir) assert cut_rvb.num_samples == cut.num_samples assert cut_rvb.duration == cut.duration np.testing.assert_array_almost_equal(cut_rvb.load_audio(), cut.load_audio())
def padding_cut(): return PaddingCut(id='padding-1', duration=10.0, num_frames=1000, num_features=40, sampling_rate=16000, num_samples=160000, use_log_energy=True)
def padding_cut(): return PaddingCut(id='padding-1', duration=10.0, num_frames=1000, num_features=40, frame_shift=0.01, sampling_rate=16000, num_samples=160000, feat_value=PADDING_LOG_ENERGY)
def padding_cut(): return PaddingCut( id="padding-1", duration=10.0, num_frames=1000, num_features=40, frame_shift=0.01, sampling_rate=16000, num_samples=160000, feat_value=LOG_EPSILON, )
def cutset(): return CutSet.from_cuts([ # MonoCut dummy_cut(0, supervisions=[dummy_supervision(0)]), # PaddingCut PaddingCut('pad', duration=1.0, sampling_rate=16000, feat_value=-100, num_frames=100, frame_shift=0.01, num_features=80, num_samples=16000), # MixedCut dummy_cut(0, supervisions=[dummy_supervision(0)]).mix( dummy_cut(1, supervisions=[dummy_supervision(1)]), offset_other_by=0.5, snr=10 ) ])
import pytest from lhotse import CutSet from lhotse.cut import PaddingCut from lhotse.testing.dummies import dummy_cut, dummy_supervision parametrize_on_cut_types = pytest.mark.parametrize( 'cut', [ # MonoCut dummy_cut(0, supervisions=[dummy_supervision(0)]), # PaddingCut PaddingCut('pad', duration=1.0, sampling_rate=16000, feat_value=-100, num_frames=100, frame_shift=0.01, num_features=80, num_samples=16000), # MixedCut dummy_cut(0, supervisions=[dummy_supervision(0)]).mix( dummy_cut(1, supervisions=[dummy_supervision(1)]), offset_other_by=0.5, snr=10 ) ] ) @parametrize_on_cut_types def test_drop_features(cut): assert cut.has_features cut_drop = cut.drop_features() assert cut.has_features assert not cut_drop.has_features