Example #1
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.gcn"
    config.class_name = "Agent"

    config.model = ConfigDict()
    config.model.class_path = "liaison.agents.models.gcn_attn_rins"
    config.model.n_prop_layers = 4
    config.model.node_hidden_layer_sizes = [32]
    config.model.edge_hidden_layer_sizes = [32]
    config.model.key_dim = 32
    config.model.value_dim = 32
    config.model.num_heads = 4
    config.model.node_embed_dim = 32
    config.model.edge_embed_dim = 32
    config.query_key_product_hidden_layer_sizes = [16]

    config.clip_rho_threshold = 1.0
    config.clip_pg_rho_threshold = 1.0

    config.loss = ConfigDict()
    config.loss.vf_loss_coeff = 1.0

    return config
Example #2
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.ur_discrete"
    config.class_name = "Agent"
    return config
Example #3
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.gcn_multi_actions"
    config.class_name = "Agent"

    config.model = ConfigDict()
    config.model.class_path = 'liaison.agents.models.transformer_auto_regressive'
    config.model.num_blocks = 4
    config.model.d_ff = 32
    config.model.num_heads = 4
    config.model.d_model = 64
    config.model.dropout_rate = 0.
    config.model.use_mlp_value_func = False

    # The following code duplicated in gcn_rins.py as well.
    # Propagate any changes made as needed.
    config.model.model_kwargs = ConfigDict()
    config.model.model_kwargs.class_path = "liaison.agents.models.bipartite_gcn_rins"
    config.model.model_kwargs.n_prop_layers = 4
    config.model.model_kwargs.edge_embed_dim = 32
    config.model.model_kwargs.node_embed_dim = 32
    config.model.model_kwargs.global_embed_dim = 32
    config.model.model_kwargs.policy_torso_hidden_layer_sizes = [16, 16]
    config.model.model_kwargs.value_torso_hidden_layer_sizes = [16, 16]
    config.model.model_kwargs.policy_summarize_hidden_layer_sizes = [16]
    config.model.model_kwargs.value_summarize_hidden_layer_sizes = [16]
    config.model.model_kwargs.supervised_prediction_torso_hidden_layer_sizes = [
        16, 16
    ]
    config.model.model_kwargs.sum_aggregation = False
    config.model.model_kwargs.use_layer_norm = True

    config.clip_rho_threshold = 1.0
    config.clip_pg_rho_threshold = 1.0

    config.loss = ConfigDict()
    config.loss.vf_loss_coeff = 1.0

    config.loss.al_coeff = ConfigDict()
    config.loss.al_coeff.init_val = 0.
    config.loss.al_coeff.min_val = 0.
    config.loss.al_coeff.start_decay_step = int(1e10)
    config.loss.al_coeff.decay_steps = 5000
    # dec_val not used for linear scheme
    config.loss.al_coeff.dec_val = .1
    config.loss.al_coeff.dec_approach = 'linear'

    # applicable for agent 'liaison.agents.gcn_large_batch'
    config.apply_grads_every = 1

    config.log_features_every = -1  # disable
    config.freeze_graphnet_weights_step = int(1e9)

    return config
Example #4
0
def get_config():
  config = get_base_config()

  # required fields.
  config.class_path = "liaison.agents.mlp"
  config.class_name = "Agent"

  config.model = ConfigDict()
  config.model.class_path = "liaison.agents.models.mlp"
  config.model.hidden_layer_sizes = [32, 32]

  config.loss = ConfigDict()
  config.loss.vf_loss_coeff = 1.0

  return config
Example #5
0
def get_config():
  config = get_base_config()

  # required fields.
  config.class_path = "liaison.agents.gcn_imitates_mlp"
  config.class_name = "Agent"

  config.model = ConfigDict()
  config.model.class_path = "liaison.agents.models.gcn_rins"
  config.model.n_prop_layers = 8
  config.model.node_hidden_layer_sizes = [32]
  config.model.edge_hidden_layer_sizes = [32]
  config.model.sum_aggregation = False

  config.mlp_model = get_mlp_config().model
  return config
Example #6
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.gcn"
    config.class_name = "Agent"

    # The following code duplicated in gcn_ar.py as well.
    # Propagate any changes made
    config.model = ConfigDict()
    config.model.class_path = "liaison.agents.models.gcn_rins"
    config.model.n_prop_layers = 4
    config.model.edge_embed_dim = 16
    config.model.node_embed_dim = 16
    config.model.global_embed_dim = 16
    config.model.node_hidden_layer_sizes = [16]
    config.model.edge_hidden_layer_sizes = [16]
    config.model.policy_torso_hidden_layer_sizes = [16, 16]
    config.model.value_torso_hidden_layer_sizes = [16, 16]
    config.model.policy_summarize_hidden_layer_sizes = [16]
    config.model.value_summarize_hidden_layer_sizes = [16]
    config.model.supervised_prediction_torso_hidden_layer_sizes = [16, 16]

    config.model.sum_aggregation = False
    config.model.use_layer_norm = True

    config.clip_rho_threshold = 1.0
    config.clip_pg_rho_threshold = 1.0

    config.loss = ConfigDict()
    config.loss.vf_loss_coeff = 1.0

    config.loss.al_coeff = ConfigDict()
    config.loss.al_coeff.init_val = 0.
    config.loss.al_coeff.min_val = 0.
    config.loss.al_coeff.start_decay_step = int(1e10)
    config.loss.al_coeff.decay_steps = 5000
    # dec_val not used for linear scheme
    config.loss.al_coeff.dec_val = .1
    config.loss.al_coeff.dec_approach = 'linear'

    # applicable for agent 'liaison.agents.gcn_large_batch'
    config.apply_grads_every = 1
    config.choose_stop_switch = False

    return config
Example #7
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.mlp"
    config.class_name = "Agent"

    config.model = ConfigDict()
    config.model.class_path = "liaison.agents.models.transformer_rins"

    config.clip_rho_threshold = 1.0
    config.clip_pg_rho_threshold = 1.0

    config.loss = ConfigDict()
    config.loss.vf_loss_coeff = 1.0

    return config
Example #8
0
def get_config():
    config = get_base_config()

    # required fields.
    config.class_path = "liaison.agents.gcn"
    config.class_name = "Agent"

    config.model = ConfigDict()
    config.model.class_path = "liaison.agents.models.gcn"
    config.model.n_prop_layers = 8
    config.model.node_embed_dim = 32

    config.clip_rho_threshold = 1.0
    config.clip_pg_rho_threshold = 1.0

    config.loss = ConfigDict()
    config.loss.vf_loss_coeff = 1.0

    return config