def get(self): self.response.headers['Content-Type'] = 'text/plain' """ for i in np.arange(250,6001,250): list_of_entities = Forecast.query(ndb.AND(Forecast.rank >= i-250,Forecast.rank < i))#Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) list_of_entities = StockList.query(ndb.AND(StockList.rank >= i-250,StockList.rank < i))#Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) """ for i in np.arange(1, 6001, 500): list_of_keys = Forecast.query().fetch(500, keys_only=True) #list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) list_of_keys = StockList.query().fetch(25, keys_only=True) #list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) self.response.out.write('All Forecasts Deleted') self.redirect('./')
def get(self): self.response.headers['Content-Type'] = 'text/plain' """ for i in np.arange(250,6001,250): list_of_entities = Forecast.query(ndb.AND(Forecast.rank >= i-250,Forecast.rank < i))#Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) list_of_entities = StockList.query(ndb.AND(StockList.rank >= i-250,StockList.rank < i))#Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) """ for i in np.arange(1,6001,500): list_of_keys = Forecast.query().fetch(500, keys_only=True) #list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) list_of_keys = StockList.query().fetch(25, keys_only=True) #list_of_keys = ndb.put_multi(list_of_entities) #list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys) self.response.out.write('All Forecasts Deleted') self.redirect('./')
def InjectTestData(): #init a new forecast object, fill it with anything Forecast( rank = 1, symbol = "GOOG", company = "Google, Inc.", exchange = "NASDAQ", industry = "Technology", #predictions openPredPrice = list(550.0+5.0*(np.random.ranf(11)-0.5)), closePredPrice = list(550.0+5.0*(np.random.ranf(11)-0.5)), highPredPrice = list(555.0+10.0*(np.random.ranf(11)-0.5)), lowPredPrice = list(545.0+10.0*(np.random.ranf(11)-0.5)), volumePred = list(np.random.randint(1850000,2150000, 11)), dayOfPred = ['M','Tu','W','Th','F', 'M','Tu','W','Th', 'F', 'M','Tu','W','Th', 'F', 'M','Tu','W','Th', 'F', 'M','Tu','W','Th', 'F', 'M','Tu','W','Th', 'F', 'M'], #History lists openPriceHistory = list(550.0+5.0*(np.random.ranf(10)-0.5)), closePriceHistory = list(550.0+5.0*(np.random.ranf(10)-0.5)), highPriceHistory = list(560.0+10.0*(np.random.ranf(10)-0.5)), lowPriceHistory = list(540.0+10.0*(np.random.ranf(10)-0.5)), volumeHistory = list(np.random.randint(1850000,2150000, 10)), #prediction validation value, R2 openPredR2 = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, closePredR2 = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, highPredR2 = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, lowPredR2 = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, volumePredR2 = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, openPredSlope = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, closePredSlope = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, highPredSlope = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, lowPredSlope = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, volumePredSlope = 1.0 + (np.random.ranf(1)[0] - 0.5)/10.0, openModelAccuracy = 1, closeModelAccuracy = 2, highModelAccuracy = 2, lowModelAccuracy = 3 ).put() StockList( rank = 1, symbol = "GOOG", company = "Google, Inc.", exchange = "NASDAQ", currentPrice = 550.0+5.0*(np.random.ranf(1)[0]-0.5), forecastedPrice = 550.0+5.0*(np.random.ranf(1)[0]-0.5), modelAccuracy = np.random.randint(1,4,1)[0] ).put()
def get(self, stock_symbol): #make symbol all caps stock_symbol = stock_symbol.upper() # Checks for active Google account session user = users.get_current_user() #Only commit to ndb if we need to need_to_commit = False #Do we have a loged in user if user: #Get the users list of favorite stocks up = UserProfile.query(UserProfile.user_id == str(user.user_id())) # If new user, make profile if up.count() == 0: UserProfile(nickname = str(user.nickname()), email = str(user.email()), user_id = str(user.user_id()), federated_identity = str(user.federated_identity()), federated_provider = str(user.federated_provider()), favorite_list = []).put() up = UserProfile.query(UserProfile.user_id == str(user.user_id())) need_to_commit = True else: for u in up: #Update last login date u.last_login_date = datetime.now() #update user email if changed if user.email != u.email: u.email = str(user.email()) need_to_commit = True #optinal:Remove the stock if its in the list, otherwise add it for u in up: if stock_symbol != '': need_to_commit = True if stock_symbol in u.favorite_list: u.favorite_list.remove(stock_symbol) else: u.favorite_list.append(stock_symbol) #commit the changes if need_to_commit: for u in up: u.put() #return to where the user was if stock_symbol != '': try: self.redirect(self.request.referer) except: self.redirect('./') #no user else: #A non user tried to favorite something, lets log them in so they get the action still after login if stock_symbol != '': self.redirect(users.create_login_url(self.request.uri)) #Form the symbol list to query queryList = [] if user: for u in up: for item in u.favorite_list: queryList.append(item) #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if( (now.time() >= time(9,30) and now.time() <= time(16,30)) and (now.weekday() <= 4 ) ): timeString = "{0:s} EST - US Markets Are Open".format(now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format(now.strftime("%a, %b %d %Y, %I:%M%p")) # stockList = Forecast.query(Forecast.symbol.IN(queryList)).order(Forecast.rank) #prevent empty query from causing crashes if len(queryList)==0: stockList = [] #Get computed values if len(queryList)!=0: computedCloseValues = np.zeros((stockList.count(), 2), float) else: computedCloseValues = np.zeros((0, 2), float) i = 0 if len(queryList)!=0: for stock in stockList: #computedCloseValues[i][0] = stock.forecastedPrice-stock.currentPrice #computedCloseValues[i][1] = (stock.forecastedPrice-stock.currentPrice)/abs(stock.currentPrice)*100.0 computedCloseValues[i][0] = stock.closePredPrice[-1]-stock.closePriceHistory[-1] computedCloseValues[i][1] = (stock.closePredPrice[-1]-stock.closePriceHistory[-1])/abs(stock.closePriceHistory[-1])*100.0 i += 1 #Init items using info from forecast, just use the first item dayOfForecast = now.strftime("%A, %B %d %Y") dof = now #if stockList.count() > 0: for stock in stockList: dayOfForecast = stock.date.strftime("%A, %B %d %Y") #dof = forecast.date break #Form the login/logout url and a name to id the state in jinja2 if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' template_values = { 'stock_list':stockList, 'computed_values':computedCloseValues, #'forecast_count':forecastCount, 'timeStr':timeString, 'dayOfForecast':dayOfForecast, 'url': url, 'url_linktext': url_linktext, } #Show mystock page template = JINJA_ENVIRONMENT.get_template('mystocks.html') self.response.write(template.render(template_values))
def get(self, stock_symbol): #Request the market and prepare its data for plotting #Reqest the stock and prepare its data for plotting #Get total nubmer of predictions #global_stat = stats.GlobalStat.query().get() #forecastCount = global_stat.count if stock_symbol == '': symbol_search = self.request.get("symbol_search") #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if( (now.time() >= time(9,30) and now.time() <= time(16,30)) and (now.weekday() <= 4 ) ): timeString = "{0:s} EST - US Markets Are Open".format(now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format(now.strftime("%a, %b %d %Y, %I:%M%p")) # #query to get the top 10 stocks for newest forecast round #stockList = Forecast.query(Forecast.rank.IN(list(np.arange(1,11)))) stockList = Forecast.query(Forecast.symbol == stock_symbol.upper()) #createa binary list of stock list vs user favorite list user = users.get_current_user() if user: up = UserProfile.query(UserProfile.user_id == str(user.user_id())) favBinary = [] for u in up: for stock in stockList: if stock.symbol in u.favorite_list: favBinary.append(1) else: favBinary.append(0) break #case where user exists(like admin) but no profile yet if stockList.count() != len(favBinary): favBinary = np.zeros((stockList.count(),)) else: favBinary = np.zeros((stockList.count(),)) # #3d array of the candlestick plots # stock, list of L, list of O, list of C, list of H, list of V #stocks, history, category forecastPlotData = np.zeros((stockList.count(), 10, 6), object) #3d array of the validation plots #Stocks, history, category validationPlotData = [] #3d array of computed values nstock, 10 computedValued = np.zeros((stockList.count(), 11), float) #Init items using info from forecast, just use the first item dayOfForecast = now.strftime("%A, %B %d %Y") dof = now for forecast in stockList: validationPlotData = np.zeros((stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%A, %B %d %Y") dof = forecast.date break i = 0 for forecast in stockList: forecastPlotData[i,:,0] = [x.encode('utf-8').replace("'","") for x in forecast.dayOfPred[-10:]] #forecastPlotData[i,-1,0] = str(forecast.dayOfPred[-1]).replace("'","")#.encode('utf-8')#.replace(''','') forecastPlotData[i,:-1,1] = forecast.lowPriceHistory[-9:] forecastPlotData[i,-1,1] = forecast.lowPredPrice[-1] forecastPlotData[i,:-1,2] = forecast.openPriceHistory[-9:] forecastPlotData[i,-1,2] = forecast.openPredPrice[-1] forecastPlotData[i,:-1,3] = forecast.closePriceHistory[-9:] forecastPlotData[i,-1,3] = forecast.closePredPrice[-1] forecastPlotData[i,:-1,4] = forecast.highPriceHistory[-9:] forecastPlotData[i,-1,4] = forecast.highPredPrice[-1] forecastPlotData[i,:-1,5] = forecast.volumeHistory[-9:] forecastPlotData[i,-1,5] = forecast.volumePred[-1] validationPlotData[i,:,0] = forecast.openPriceHistory validationPlotData[i,:,1] = forecast.openPredPrice[:-1] validationPlotData[i,:,2] = forecast.closePriceHistory validationPlotData[i,:,3] = forecast.closePredPrice[:-1] validationPlotData[i,:,4] = forecast.highPriceHistory validationPlotData[i,:,5] = forecast.highPredPrice[:-1] validationPlotData[i,:,6] = forecast.lowPriceHistory validationPlotData[i,:,7] = forecast.lowPredPrice[:-1] validationPlotData[i,:,8] = forecast.volumeHistory validationPlotData[i,:,9] = forecast.volumePred[:-1] computedValued[i][0] = forecast.openPredPrice[-1]-forecast.openPriceHistory[-1] computedValued[i][1] = (forecast.openPredPrice[-1]-forecast.openPriceHistory[-1])/abs(forecast.openPriceHistory[-1])*100.0 computedValued[i][2] = forecast.closePredPrice[-1]-forecast.closePriceHistory[-1] computedValued[i][3] =(forecast.closePredPrice[-1]-forecast.closePriceHistory[-1])/abs(forecast.closePriceHistory[-1])*100.0 computedValued[i][4] = forecast.highPredPrice[-1]-forecast.highPriceHistory[-1] computedValued[i][5] =(forecast.highPredPrice[-1]-forecast.highPriceHistory[-1])/abs(forecast.highPriceHistory[-1])*100.0 computedValued[i][6] = forecast.lowPredPrice[-1]-forecast.lowPriceHistory[-1] computedValued[i][7] =(forecast.lowPredPrice[-1]-forecast.lowPriceHistory[-1])/abs(forecast.lowPriceHistory[-1])*100.0 computedValued[i][8] = forecast.volumePred[-1]-forecast.volumeHistory[-1] computedValued[i][9] = (forecast.volumePred[-1]-forecast.volumeHistory[-1])/abs(forecast.volumeHistory[-1])*100.0 computedValued[i][10] = favBinary[i] #Count for filling arrays i += 1 if users.get_current_user(): url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Sign Up for Updates' template_values = { 'stock_list':stockList, 'forecast_data':forecastPlotData, 'validation_data':validationPlotData, 'computed_values':computedValued, #'forecast_count':forecastCount, 'timeStr':timeString, 'dayOfForecast':dayOfForecast, 'url': url, 'url_linktext': url_linktext, } template = JINJA_ENVIRONMENT.get_template('symbol.html') self.response.write(template.render(template_values))
def get(self): """list_of_entities = Forecast.query(Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys)""" #Get total nubmer of predictions global_stat = stats.GlobalStat.query().get() forecastCount = global_stat.count #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if ((now.time() >= time(9, 30) and now.time() <= time(16, 30)) and (now.weekday() <= 4)): timeString = "{0:s} EST - US Markets Are Open".format( now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format( now.strftime("%a, %b %d %Y, %I:%M%p")) # #query to get the top 10 stocks for newest forecast round stockList = Forecast.query(Forecast.rank.IN(list(np.arange(1, 11)))) #3d array of the candlestick plots # stock, list of L, list of O, list of C, list of H, list of V #stocks, history, category forecastPlotData = np.zeros((stockList.count(), 10, 6), object) #3d array of the validation plots #Stocks, history, category validationPlotData = [] #3d array of computed values nstock, 10 computedValued = np.zeros((stockList.count(), 10), float) #Init items using info from forecast, just use the first item """dayOfForecast = now.strftime("%d/%m/%Y") dof = now for forecast in stockList: validationPlotData = np.zeros((stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%m/%d/%Y") dof = forecast.date break if now.date() == dof.date(): nameOfDayOfForecast = 'Today' else: nameOfDayOfForecast = dof.strftime("%a")""" dayOfForecast = now.strftime("%A, %B %d %Y") dof = now for forecast in stockList: validationPlotData = np.zeros( (stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%A, %B %d %Y") dof = forecast.date break i = 0 for forecast in stockList: forecastPlotData[i, :, 0] = [ x.encode('utf-8').replace("'", "") for x in forecast.dayOfPred[-10:] ] #forecastPlotData[i,-1,0] = str(forecast.dayOfPred[-1]).replace("'","")#.encode('utf-8')#.replace(''','') forecastPlotData[i, :-1, 1] = forecast.lowPriceHistory[-9:] forecastPlotData[i, -1, 1] = forecast.lowPredPrice[-1] forecastPlotData[i, :-1, 2] = forecast.openPriceHistory[-9:] forecastPlotData[i, -1, 2] = forecast.openPredPrice[-1] forecastPlotData[i, :-1, 3] = forecast.closePriceHistory[-9:] forecastPlotData[i, -1, 3] = forecast.closePredPrice[-1] forecastPlotData[i, :-1, 4] = forecast.highPriceHistory[-9:] forecastPlotData[i, -1, 4] = forecast.highPredPrice[-1] forecastPlotData[i, :-1, 5] = forecast.volumeHistory[-9:] forecastPlotData[i, -1, 5] = forecast.volumePred[-1] validationPlotData[i, :, 0] = forecast.openPriceHistory validationPlotData[i, :, 1] = forecast.openPredPrice[:-1] validationPlotData[i, :, 2] = forecast.closePriceHistory validationPlotData[i, :, 3] = forecast.closePredPrice[:-1] validationPlotData[i, :, 4] = forecast.highPriceHistory validationPlotData[i, :, 5] = forecast.highPredPrice[:-1] validationPlotData[i, :, 6] = forecast.lowPriceHistory validationPlotData[i, :, 7] = forecast.lowPredPrice[:-1] validationPlotData[i, :, 8] = forecast.volumeHistory validationPlotData[i, :, 9] = forecast.volumePred[:-1] computedValued[i][ 0] = forecast.openPredPrice[-1] - forecast.openPriceHistory[-1] computedValued[i][1] = (forecast.openPredPrice[-1] - forecast.openPriceHistory[-1]) / abs( forecast.openPriceHistory[-1]) * 100.0 computedValued[i][2] = forecast.closePredPrice[ -1] - forecast.closePriceHistory[-1] computedValued[i][3] = (forecast.closePredPrice[-1] - forecast.closePriceHistory[-1]) / abs( forecast.closePriceHistory[-1]) * 100.0 computedValued[i][ 4] = forecast.highPredPrice[-1] - forecast.highPriceHistory[-1] computedValued[i][5] = (forecast.highPredPrice[-1] - forecast.highPriceHistory[-1]) / abs( forecast.highPriceHistory[-1]) * 100.0 computedValued[i][ 6] = forecast.lowPredPrice[-1] - forecast.lowPriceHistory[-1] computedValued[i][7] = (forecast.lowPredPrice[-1] - forecast.lowPriceHistory[-1]) / abs( forecast.lowPriceHistory[-1]) * 100.0 computedValued[i][ 8] = forecast.volumePred[-1] - forecast.volumeHistory[-1] computedValued[i][9] = (forecast.volumePred[-1] - forecast.volumeHistory[-1]) / abs( forecast.volumeHistory[-1]) * 100.0 #Count for filling arrays i += 1 """ guestbook_name = self.request.get('guestbook_name', DEFAULT_GUESTBOOK_NAME) greetings_query = Greeting.query( ancestor=guestbook_key(guestbook_name)).order(-Greeting.date) greetings = greetings_query.fetch(10) """ if users.get_current_user(): url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Sign Up for Updates' template_values = { 'stock_list': stockList, 'forecast_data': forecastPlotData, 'validation_data': validationPlotData, 'computed_values': computedValued, 'forecast_count': forecastCount, 'timeStr': timeString, 'dayOfForecast': dayOfForecast, #'nameOfDayOfForecast':nameOfDayOfForecast, 'url': url, 'url_linktext': url_linktext, } template = JINJA_ENVIRONMENT.get_template('index.html') self.response.write(template.render(template_values))
def get(self, stock_symbol): #make symbol all caps stock_symbol = stock_symbol.upper() # Checks for active Google account session user = users.get_current_user() #Only commit to ndb if we need to need_to_commit = False #Do we have a loged in user if user: #Get the users list of favorite stocks up = UserProfile.query(UserProfile.user_id == str(user.user_id())) # If new user, make profile if up.count() == 0: UserProfile(nickname=str(user.nickname()), email=str(user.email()), user_id=str(user.user_id()), federated_identity=str(user.federated_identity()), federated_provider=str(user.federated_provider()), favorite_list=[]).put() up = UserProfile.query( UserProfile.user_id == str(user.user_id())) need_to_commit = True else: for u in up: #Update last login date u.last_login_date = datetime.now() #update user email if changed if user.email != u.email: u.email = str(user.email()) need_to_commit = True #optinal:Remove the stock if its in the list, otherwise add it for u in up: if stock_symbol != '': need_to_commit = True if stock_symbol in u.favorite_list: u.favorite_list.remove(stock_symbol) else: u.favorite_list.append(stock_symbol) #commit the changes if need_to_commit: for u in up: u.put() #return to where the user was if stock_symbol != '': try: self.redirect(self.request.referer) except: self.redirect('./') #no user else: #A non user tried to favorite something, lets log them in so they get the action still after login if stock_symbol != '': self.redirect(users.create_login_url(self.request.uri)) #Form the symbol list to query queryList = [] if user: for u in up: for item in u.favorite_list: queryList.append(item) #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if ((now.time() >= time(9, 30) and now.time() <= time(16, 30)) and (now.weekday() <= 4)): timeString = "{0:s} EST - US Markets Are Open".format( now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format( now.strftime("%a, %b %d %Y, %I:%M%p")) # stockList = Forecast.query(Forecast.symbol.IN(queryList)).order( Forecast.rank) #prevent empty query from causing crashes if len(queryList) == 0: stockList = [] #Get computed values if len(queryList) != 0: computedCloseValues = np.zeros((stockList.count(), 2), float) else: computedCloseValues = np.zeros((0, 2), float) i = 0 if len(queryList) != 0: for stock in stockList: #computedCloseValues[i][0] = stock.forecastedPrice-stock.currentPrice #computedCloseValues[i][1] = (stock.forecastedPrice-stock.currentPrice)/abs(stock.currentPrice)*100.0 computedCloseValues[i][ 0] = stock.closePredPrice[-1] - stock.closePriceHistory[-1] computedCloseValues[i][1] = ( stock.closePredPrice[-1] - stock.closePriceHistory[-1] ) / abs(stock.closePriceHistory[-1]) * 100.0 i += 1 #Init items using info from forecast, just use the first item dayOfForecast = now.strftime("%A, %B %d %Y") dof = now #if stockList.count() > 0: for stock in stockList: dayOfForecast = stock.date.strftime("%A, %B %d %Y") #dof = forecast.date break #Form the login/logout url and a name to id the state in jinja2 if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' template_values = { 'stock_list': stockList, 'computed_values': computedCloseValues, #'forecast_count':forecastCount, 'timeStr': timeString, 'dayOfForecast': dayOfForecast, 'url': url, 'url_linktext': url_linktext, } #Show mystock page template = JINJA_ENVIRONMENT.get_template('mystocks.html') self.response.write(template.render(template_values))
def get(self, stock_symbol): #Request the market and prepare its data for plotting #Reqest the stock and prepare its data for plotting #Get total nubmer of predictions #global_stat = stats.GlobalStat.query().get() #forecastCount = global_stat.count if stock_symbol == '': symbol_search = self.request.get("symbol_search") #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if ((now.time() >= time(9, 30) and now.time() <= time(16, 30)) and (now.weekday() <= 4)): timeString = "{0:s} EST - US Markets Are Open".format( now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format( now.strftime("%a, %b %d %Y, %I:%M%p")) # #query to get the top 10 stocks for newest forecast round #stockList = Forecast.query(Forecast.rank.IN(list(np.arange(1,11)))) stockList = Forecast.query(Forecast.symbol == stock_symbol.upper()) #createa binary list of stock list vs user favorite list user = users.get_current_user() if user: up = UserProfile.query(UserProfile.user_id == str(user.user_id())) favBinary = [] for u in up: for stock in stockList: if stock.symbol in u.favorite_list: favBinary.append(1) else: favBinary.append(0) break #case where user exists(like admin) but no profile yet if stockList.count() != len(favBinary): favBinary = np.zeros((stockList.count(), )) else: favBinary = np.zeros((stockList.count(), )) # #3d array of the candlestick plots # stock, list of L, list of O, list of C, list of H, list of V #stocks, history, category forecastPlotData = np.zeros((stockList.count(), 10, 6), object) #3d array of the validation plots #Stocks, history, category validationPlotData = [] #3d array of computed values nstock, 10 computedValued = np.zeros((stockList.count(), 11), float) #Init items using info from forecast, just use the first item dayOfForecast = now.strftime("%A, %B %d %Y") dof = now for forecast in stockList: validationPlotData = np.zeros( (stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%A, %B %d %Y") dof = forecast.date break i = 0 for forecast in stockList: forecastPlotData[i, :, 0] = [ x.encode('utf-8').replace("'", "") for x in forecast.dayOfPred[-10:] ] #forecastPlotData[i,-1,0] = str(forecast.dayOfPred[-1]).replace("'","")#.encode('utf-8')#.replace(''','') forecastPlotData[i, :-1, 1] = forecast.lowPriceHistory[-9:] forecastPlotData[i, -1, 1] = forecast.lowPredPrice[-1] forecastPlotData[i, :-1, 2] = forecast.openPriceHistory[-9:] forecastPlotData[i, -1, 2] = forecast.openPredPrice[-1] forecastPlotData[i, :-1, 3] = forecast.closePriceHistory[-9:] forecastPlotData[i, -1, 3] = forecast.closePredPrice[-1] forecastPlotData[i, :-1, 4] = forecast.highPriceHistory[-9:] forecastPlotData[i, -1, 4] = forecast.highPredPrice[-1] forecastPlotData[i, :-1, 5] = forecast.volumeHistory[-9:] forecastPlotData[i, -1, 5] = forecast.volumePred[-1] validationPlotData[i, :, 0] = forecast.openPriceHistory validationPlotData[i, :, 1] = forecast.openPredPrice[:-1] validationPlotData[i, :, 2] = forecast.closePriceHistory validationPlotData[i, :, 3] = forecast.closePredPrice[:-1] validationPlotData[i, :, 4] = forecast.highPriceHistory validationPlotData[i, :, 5] = forecast.highPredPrice[:-1] validationPlotData[i, :, 6] = forecast.lowPriceHistory validationPlotData[i, :, 7] = forecast.lowPredPrice[:-1] validationPlotData[i, :, 8] = forecast.volumeHistory validationPlotData[i, :, 9] = forecast.volumePred[:-1] computedValued[i][ 0] = forecast.openPredPrice[-1] - forecast.openPriceHistory[-1] computedValued[i][1] = (forecast.openPredPrice[-1] - forecast.openPriceHistory[-1]) / abs( forecast.openPriceHistory[-1]) * 100.0 computedValued[i][2] = forecast.closePredPrice[ -1] - forecast.closePriceHistory[-1] computedValued[i][3] = (forecast.closePredPrice[-1] - forecast.closePriceHistory[-1]) / abs( forecast.closePriceHistory[-1]) * 100.0 computedValued[i][ 4] = forecast.highPredPrice[-1] - forecast.highPriceHistory[-1] computedValued[i][5] = (forecast.highPredPrice[-1] - forecast.highPriceHistory[-1]) / abs( forecast.highPriceHistory[-1]) * 100.0 computedValued[i][ 6] = forecast.lowPredPrice[-1] - forecast.lowPriceHistory[-1] computedValued[i][7] = (forecast.lowPredPrice[-1] - forecast.lowPriceHistory[-1]) / abs( forecast.lowPriceHistory[-1]) * 100.0 computedValued[i][ 8] = forecast.volumePred[-1] - forecast.volumeHistory[-1] computedValued[i][9] = (forecast.volumePred[-1] - forecast.volumeHistory[-1]) / abs( forecast.volumeHistory[-1]) * 100.0 computedValued[i][10] = favBinary[i] #Count for filling arrays i += 1 if users.get_current_user(): url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Sign Up for Updates' template_values = { 'stock_list': stockList, 'forecast_data': forecastPlotData, 'validation_data': validationPlotData, 'computed_values': computedValued, #'forecast_count':forecastCount, 'timeStr': timeString, 'dayOfForecast': dayOfForecast, 'url': url, 'url_linktext': url_linktext, } template = JINJA_ENVIRONMENT.get_template('symbol.html') self.response.write(template.render(template_values))
def get(self): """list_of_entities = Forecast.query(Forecast.rank < 6000) list_of_keys = ndb.put_multi(list_of_entities) list_of_entities = ndb.get_multi(list_of_keys) ndb.delete_multi(list_of_keys)""" #Get total nubmer of predictions global_stat = stats.GlobalStat.query().get() forecastCount = global_stat.count #Get the time, make a string of format: #Tue, Jan 6, 2014, 12:00AM EST - US MARKETS CLOSED now = datetime.now(tz=timezone('US/Eastern')) #Construct the EST time for the top of page if( (now.time() >= time(9,30) and now.time() <= time(16,30)) and (now.weekday() <= 4 ) ): timeString = "{0:s} EST - US Markets Are Open".format(now.strftime("%a, %b %d %Y, %I:%M%p")) else: timeString = "{0:s} EST - US Markets Are Closed".format(now.strftime("%a, %b %d %Y, %I:%M%p")) # #query to get the top 10 stocks for newest forecast round stockList = Forecast.query(Forecast.rank.IN(list(np.arange(1,11)))) #3d array of the candlestick plots # stock, list of L, list of O, list of C, list of H, list of V #stocks, history, category forecastPlotData = np.zeros((stockList.count(), 10, 6), object) #3d array of the validation plots #Stocks, history, category validationPlotData = [] #3d array of computed values nstock, 10 computedValued = np.zeros((stockList.count(), 10), float) #Init items using info from forecast, just use the first item """dayOfForecast = now.strftime("%d/%m/%Y") dof = now for forecast in stockList: validationPlotData = np.zeros((stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%m/%d/%Y") dof = forecast.date break if now.date() == dof.date(): nameOfDayOfForecast = 'Today' else: nameOfDayOfForecast = dof.strftime("%a")""" dayOfForecast = now.strftime("%A, %B %d %Y") dof = now for forecast in stockList: validationPlotData = np.zeros((stockList.count(), len(forecast.lowPriceHistory), 10), object) dayOfForecast = forecast.date.strftime("%A, %B %d %Y") dof = forecast.date break i = 0 for forecast in stockList: forecastPlotData[i,:,0] = [x.encode('utf-8').replace("'","") for x in forecast.dayOfPred[-10:]] #forecastPlotData[i,-1,0] = str(forecast.dayOfPred[-1]).replace("'","")#.encode('utf-8')#.replace(''','') forecastPlotData[i,:-1,1] = forecast.lowPriceHistory[-9:] forecastPlotData[i,-1,1] = forecast.lowPredPrice[-1] forecastPlotData[i,:-1,2] = forecast.openPriceHistory[-9:] forecastPlotData[i,-1,2] = forecast.openPredPrice[-1] forecastPlotData[i,:-1,3] = forecast.closePriceHistory[-9:] forecastPlotData[i,-1,3] = forecast.closePredPrice[-1] forecastPlotData[i,:-1,4] = forecast.highPriceHistory[-9:] forecastPlotData[i,-1,4] = forecast.highPredPrice[-1] forecastPlotData[i,:-1,5] = forecast.volumeHistory[-9:] forecastPlotData[i,-1,5] = forecast.volumePred[-1] validationPlotData[i,:,0] = forecast.openPriceHistory validationPlotData[i,:,1] = forecast.openPredPrice[:-1] validationPlotData[i,:,2] = forecast.closePriceHistory validationPlotData[i,:,3] = forecast.closePredPrice[:-1] validationPlotData[i,:,4] = forecast.highPriceHistory validationPlotData[i,:,5] = forecast.highPredPrice[:-1] validationPlotData[i,:,6] = forecast.lowPriceHistory validationPlotData[i,:,7] = forecast.lowPredPrice[:-1] validationPlotData[i,:,8] = forecast.volumeHistory validationPlotData[i,:,9] = forecast.volumePred[:-1] computedValued[i][0] = forecast.openPredPrice[-1]-forecast.openPriceHistory[-1] computedValued[i][1] = (forecast.openPredPrice[-1]-forecast.openPriceHistory[-1])/abs(forecast.openPriceHistory[-1])*100.0 computedValued[i][2] = forecast.closePredPrice[-1]-forecast.closePriceHistory[-1] computedValued[i][3] =(forecast.closePredPrice[-1]-forecast.closePriceHistory[-1])/abs(forecast.closePriceHistory[-1])*100.0 computedValued[i][4] = forecast.highPredPrice[-1]-forecast.highPriceHistory[-1] computedValued[i][5] =(forecast.highPredPrice[-1]-forecast.highPriceHistory[-1])/abs(forecast.highPriceHistory[-1])*100.0 computedValued[i][6] = forecast.lowPredPrice[-1]-forecast.lowPriceHistory[-1] computedValued[i][7] =(forecast.lowPredPrice[-1]-forecast.lowPriceHistory[-1])/abs(forecast.lowPriceHistory[-1])*100.0 computedValued[i][8] = forecast.volumePred[-1]-forecast.volumeHistory[-1] computedValued[i][9] = (forecast.volumePred[-1]-forecast.volumeHistory[-1])/abs(forecast.volumeHistory[-1])*100.0 #Count for filling arrays i += 1 """ guestbook_name = self.request.get('guestbook_name', DEFAULT_GUESTBOOK_NAME) greetings_query = Greeting.query( ancestor=guestbook_key(guestbook_name)).order(-Greeting.date) greetings = greetings_query.fetch(10) """ if users.get_current_user(): url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' else: url = users.create_login_url(self.request.uri) url_linktext = 'Sign Up for Updates' template_values = { 'stock_list':stockList, 'forecast_data':forecastPlotData, 'validation_data':validationPlotData, 'computed_values':computedValued, 'forecast_count':forecastCount, 'timeStr':timeString, 'dayOfForecast':dayOfForecast, #'nameOfDayOfForecast':nameOfDayOfForecast, 'url': url, 'url_linktext': url_linktext, } template = JINJA_ENVIRONMENT.get_template('index.html') self.response.write(template.render(template_values))