Example #1
0
    def __init__(self, train_ds, val_ds, fold):
        self.fold = fold

        self.init_lr = cfg.TRAIN.init_lr
        self.warup_step = cfg.TRAIN.warmup_step
        self.epochs = cfg.TRAIN.epoch
        self.batch_size = cfg.TRAIN.batch_size
        self.l2_regularization = cfg.TRAIN.weight_decay_factor

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else 'cpu')

        self.model = Net().to(self.device)

        self.load_weight()

        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            cfg.TRAIN.weight_decay_factor
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if 'Adamw' in cfg.TRAIN.opt:

            self.optimizer = torch.optim.AdamW(self.model.parameters(),
                                               lr=self.init_lr,
                                               eps=1.e-5)
        else:
            self.optimizer = torch.optim.SGD(self.model.parameters(),
                                             lr=0.001,
                                             momentum=0.9)

        if cfg.TRAIN.SWA > 0:
            ##use swa
            self.optimizer = SWA(self.optimizer)

        if cfg.TRAIN.mix_precision:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

        self.ema = EMA(self.model, 0.999)

        self.ema.register()
        ###control vars
        self.iter_num = 0

        self.train_ds = train_ds

        self.val_ds = val_ds

        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,mode='max', patience=3,verbose=True)
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.epochs, eta_min=1.e-6)

        self.criterion = nn.BCEWithLogitsLoss().to(self.device)
Example #2
0
class Train(object):
    """Train class.
  """
    def __init__(self, train_ds, val_ds, fold):
        self.fold = fold

        self.init_lr = cfg.TRAIN.init_lr
        self.warup_step = cfg.TRAIN.warmup_step
        self.epochs = cfg.TRAIN.epoch
        self.batch_size = cfg.TRAIN.batch_size
        self.l2_regularization = cfg.TRAIN.weight_decay_factor

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else 'cpu')

        self.model = Net().to(self.device)

        self.load_weight()

        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            cfg.TRAIN.weight_decay_factor
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if 'Adamw' in cfg.TRAIN.opt:

            self.optimizer = torch.optim.AdamW(self.model.parameters(),
                                               lr=self.init_lr,
                                               eps=1.e-5)
        else:
            self.optimizer = torch.optim.SGD(self.model.parameters(),
                                             lr=0.001,
                                             momentum=0.9)

        if cfg.TRAIN.SWA > 0:
            ##use swa
            self.optimizer = SWA(self.optimizer)

        if cfg.TRAIN.mix_precision:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

        self.ema = EMA(self.model, 0.999)

        self.ema.register()
        ###control vars
        self.iter_num = 0

        self.train_ds = train_ds

        self.val_ds = val_ds

        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,mode='max', patience=3,verbose=True)
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.epochs, eta_min=1.e-6)

        self.criterion = nn.BCEWithLogitsLoss().to(self.device)

    def custom_loop(self):
        """Custom training and testing loop.
    Args:
      train_dist_dataset: Training dataset created using strategy.
      test_dist_dataset: Testing dataset created using strategy.
      strategy: Distribution strategy.
    Returns:
      train_loss, train_accuracy, test_loss, test_accuracy
    """
        def distributed_train_epoch(epoch_num):

            summary_loss = AverageMeter()
            acc_score = ACCMeter()
            self.model.train()

            if cfg.MODEL.freeze_bn:
                for m in self.model.modules():
                    if isinstance(m, nn.BatchNorm2d):
                        m.eval()
                        if cfg.MODEL.freeze_bn_affine:
                            m.weight.requires_grad = False
                            m.bias.requires_grad = False
            for step in range(self.train_ds.size):

                if epoch_num < 10:
                    ###excute warm up in the first epoch
                    if self.warup_step > 0:
                        if self.iter_num < self.warup_step:
                            for param_group in self.optimizer.param_groups:
                                param_group['lr'] = self.iter_num / float(
                                    self.warup_step) * self.init_lr
                                lr = param_group['lr']

                            logger.info('warm up with learning rate: [%f]' %
                                        (lr))

                start = time.time()

                images, data, target = self.train_ds()
                images = torch.from_numpy(images).to(self.device).float()
                data = torch.from_numpy(data).to(self.device).float()
                target = torch.from_numpy(target).to(self.device).float()

                batch_size = data.shape[0]

                output = self.model(images, data)

                current_loss = self.criterion(output, target)

                summary_loss.update(current_loss.detach().item(), batch_size)
                acc_score.update(target, output)
                self.optimizer.zero_grad()

                if cfg.TRAIN.mix_precision:
                    with amp.scale_loss(current_loss,
                                        self.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    current_loss.backward()

                self.optimizer.step()
                if cfg.MODEL.ema:
                    self.ema.update()
                self.iter_num += 1
                time_cost_per_batch = time.time() - start

                images_per_sec = cfg.TRAIN.batch_size / time_cost_per_batch

                if self.iter_num % cfg.TRAIN.log_interval == 0:

                    log_message = '[fold %d], '\
                                  'Train Step %d, ' \
                                  'summary_loss: %.6f, ' \
                                  'accuracy: %.6f, ' \
                                  'time: %.6f, '\
                                  'speed %d images/persec'% (
                                      self.fold,
                                      step,
                                      summary_loss.avg,
                                      acc_score.avg,
                                      time.time() - start,
                                      images_per_sec)
                    logger.info(log_message)

            if cfg.TRAIN.SWA > 0 and epoch_num >= cfg.TRAIN.SWA:
                self.optimizer.update_swa()

            return summary_loss, acc_score

        def distributed_test_epoch(epoch_num):
            summary_loss = AverageMeter()
            acc_score = ACCMeter()

            self.model.eval()
            t = time.time()
            with torch.no_grad():
                for step in range(self.val_ds.size):
                    images, data, target = self.train_ds()
                    images = torch.from_numpy(images).to(self.device).float()
                    data = torch.from_numpy(data).to(self.device).float()
                    target = torch.from_numpy(target).to(self.device).float()
                    batch_size = data.shape[0]

                    output = self.model(images, data)
                    loss = self.criterion(output, target)

                    summary_loss.update(loss.detach().item(), batch_size)
                    acc_score.update(target, output)

                    if step % cfg.TRAIN.log_interval == 0:

                        log_message = '[fold %d], '\
                                      'Val Step %d, ' \
                                      'summary_loss: %.6f, ' \
                                      'acc: %.6f, ' \
                                      'time: %.6f' % (
                                      self.fold,step, summary_loss.avg, acc_score.avg, time.time() - t)

                        logger.info(log_message)

            return summary_loss, acc_score

        for epoch in range(self.epochs):

            for param_group in self.optimizer.param_groups:
                lr = param_group['lr']
            logger.info('learning rate: [%f]' % (lr))
            t = time.time()

            summary_loss, acc_score = distributed_train_epoch(epoch)

            train_epoch_log_message = '[fold %d], '\
                                      '[RESULT]: Train. Epoch: %d,' \
                                      ' summary_loss: %.5f,' \
                                      ' acuracy: %.5f,' \
                                      ' time:%.5f' % (
                                      self.fold,epoch, summary_loss.avg,acc_score.avg, (time.time() - t))
            logger.info(train_epoch_log_message)

            if cfg.TRAIN.SWA > 0 and epoch >= cfg.TRAIN.SWA:

                ###switch to avg model
                self.optimizer.swap_swa_sgd()

            ##switch eam weighta
            if cfg.MODEL.ema:
                self.ema.apply_shadow()

            if epoch % cfg.TRAIN.test_interval == 0:

                summary_loss, acc_score = distributed_test_epoch(epoch)

                val_epoch_log_message = '[fold %d], '\
                                        '[RESULT]: VAL. Epoch: %d,' \
                                        ' summary_loss: %.5f,' \
                                        ' accuracy: %.5f,' \
                                        ' time:%.5f' % (
                                         self.fold,epoch, summary_loss.avg,acc_score.avg, (time.time() - t))
                logger.info(val_epoch_log_message)

            self.scheduler.step()
            # self.scheduler.step(final_scores.avg)

            #### save model
            if not os.access(cfg.MODEL.model_path, os.F_OK):
                os.mkdir(cfg.MODEL.model_path)
            ###save the best auc model

            #### save the model every end of epoch
            current_model_saved_name = './models/fold%d_epoch_%d_val_loss%.6f.pth' % (
                self.fold, epoch, summary_loss.avg)

            logger.info('A model saved to %s' % current_model_saved_name)
            torch.save(self.model.state_dict(), current_model_saved_name)

            ####switch back
            if cfg.MODEL.ema:
                self.ema.restore()

            # save_checkpoint({
            #           'state_dict': self.model.state_dict(),
            #           },iters=epoch,tag=current_model_saved_name)

            if cfg.TRAIN.SWA > 0 and epoch > cfg.TRAIN.SWA:
                ###switch back to plain model to train next epoch
                self.optimizer.swap_swa_sgd()

    def load_weight(self):
        if cfg.MODEL.pretrained_model is not None:
            state_dict = torch.load(cfg.MODEL.pretrained_model,
                                    map_location=self.device)
            self.model.load_state_dict(state_dict, strict=False)
Example #3
0
    def __init__(self, ):

        trainds = AlaskaDataIter(cfg.DATA.root_path,
                                 cfg.DATA.train_txt_path,
                                 training_flag=True)
        self.train_ds = DataLoader(trainds,
                                   cfg.TRAIN.batch_size,
                                   num_workers=cfg.TRAIN.process_num,
                                   shuffle=True)

        valds = AlaskaDataIter(cfg.DATA.root_path,
                               cfg.DATA.val_txt_path,
                               training_flag=False)
        self.val_ds = DataLoader(valds,
                                 cfg.TRAIN.batch_size,
                                 num_workers=cfg.TRAIN.process_num,
                                 shuffle=False)

        self.init_lr = cfg.TRAIN.init_lr
        self.warup_step = cfg.TRAIN.warmup_step
        self.epochs = cfg.TRAIN.epoch
        self.batch_size = cfg.TRAIN.batch_size
        self.l2_regularization = cfg.TRAIN.weight_decay_factor

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else 'cpu')

        self.model = CenterNet().to(self.device)

        self.load_weight()

        if 'Adamw' in cfg.TRAIN.opt:

            self.optimizer = torch.optim.AdamW(
                self.model.parameters(),
                lr=self.init_lr,
                eps=1.e-5,
                weight_decay=self.l2_regularization)
        else:
            self.optimizer = torch.optim.SGD(
                self.model.parameters(),
                lr=self.init_lr,
                momentum=0.9,
                weight_decay=self.l2_regularization)

        if cfg.TRAIN.SWA > 0:
            ##use swa
            self.optimizer = SWA(self.optimizer)

        if cfg.TRAIN.mix_precision:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

        self.model = nn.DataParallel(self.model)

        self.ema = EMA(self.model, 0.999)

        self.ema.register()
        ###control vars
        self.iter_num = 0

        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,mode='max', patience=3,verbose=True)
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.epochs, eta_min=1.e-6)

        self.criterion = CenterNetLoss().to(self.device)
Example #4
0
    def reset(self, model_name):

        self.model_name = 'FINETUNE' + self.model_name
        self.init_lr = 1e-5
        self.warup_step = -1
        self.epochs = 15
        self.batch_size = cfg.TRAIN.batch_size
        self.l2_regularization = cfg.TRAIN.weight_decay_factor

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else 'cpu')

        state_dict = torch.load(model_name, map_location=self.device)
        self.model.load_state_dict(state_dict, strict=False)

        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            cfg.TRAIN.weight_decay_factor
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if 'Adamw' in cfg.TRAIN.opt:

            self.optimizer = torch.optim.AdamW(
                self.model.parameters(),
                lr=self.init_lr,
                eps=1.e-5,
                weight_decay=cfg.TRAIN.weight_decay_factor)
        else:
            self.optimizer = torch.optim.SGD(self.model.parameters(),
                                             lr=self.init_lr,
                                             momentum=0.9)
        if cfg.TRAIN.SWA > 0:
            ##use swa
            self.optimizer = SWA(self.optimizer)

        if cfg.TRAIN.mix_precision:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

        if cfg.TRAIN.num_gpu > 1:
            self.model = nn.DataParallel(self.model)

        self.ema = EMA(self.model, 0.999)

        self.ema.register()
        ###control vars
        self.iter_num = 0

        self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            self.optimizer,
            mode='min',
            patience=5,
            factor=0.5,
            min_lr=1e-6,
            verbose=True)
        # self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( self.optimizer, self.epochs,eta_min=1.e-6)

        self.train_criterion = BCEWithLogitsLoss(smooth_eps=0.001).to(
            self.device)
        self.criterion = nn.BCEWithLogitsLoss().to(self.device)

        self.pretrain = True
Example #5
0
class Train(object):
    """Train class.
  """
    def __init__(self, ):

        trainds = AlaskaDataIter(cfg.DATA.root_path,
                                 cfg.DATA.train_txt_path,
                                 training_flag=True)
        self.train_ds = DataLoader(trainds,
                                   cfg.TRAIN.batch_size,
                                   num_workers=cfg.TRAIN.process_num,
                                   shuffle=True)

        valds = AlaskaDataIter(cfg.DATA.root_path,
                               cfg.DATA.val_txt_path,
                               training_flag=False)
        self.val_ds = DataLoader(valds,
                                 cfg.TRAIN.batch_size,
                                 num_workers=cfg.TRAIN.process_num,
                                 shuffle=False)

        self.init_lr = cfg.TRAIN.init_lr
        self.warup_step = cfg.TRAIN.warmup_step
        self.epochs = cfg.TRAIN.epoch
        self.batch_size = cfg.TRAIN.batch_size
        self.l2_regularization = cfg.TRAIN.weight_decay_factor

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else 'cpu')

        self.model = CenterNet().to(self.device)

        self.load_weight()

        if 'Adamw' in cfg.TRAIN.opt:

            self.optimizer = torch.optim.AdamW(
                self.model.parameters(),
                lr=self.init_lr,
                eps=1.e-5,
                weight_decay=self.l2_regularization)
        else:
            self.optimizer = torch.optim.SGD(
                self.model.parameters(),
                lr=self.init_lr,
                momentum=0.9,
                weight_decay=self.l2_regularization)

        if cfg.TRAIN.SWA > 0:
            ##use swa
            self.optimizer = SWA(self.optimizer)

        if cfg.TRAIN.mix_precision:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

        self.model = nn.DataParallel(self.model)

        self.ema = EMA(self.model, 0.999)

        self.ema.register()
        ###control vars
        self.iter_num = 0

        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,mode='max', patience=3,verbose=True)
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.epochs, eta_min=1.e-6)

        self.criterion = CenterNetLoss().to(self.device)

    def custom_loop(self):
        """Custom training and testing loop.
    Args:
      train_dist_dataset: Training dataset created using strategy.
      test_dist_dataset: Testing dataset created using strategy.
      strategy: Distribution strategy.
    Returns:
      train_loss, train_accuracy, test_loss, test_accuracy
    """
        def train_epoch(epoch_num):

            summary_loss_cls = AverageMeter()
            summary_loss_wh = AverageMeter()
            self.model.train()

            if cfg.MODEL.freeze_bn:
                for m in self.model.modules():
                    if isinstance(m, nn.BatchNorm2d):
                        m.eval()
                        if cfg.MODEL.freeze_bn_affine:
                            m.weight.requires_grad = False
                            m.bias.requires_grad = False
            for image, hm_target, wh_target, weights in self.train_ds:

                if epoch_num < 10:
                    ###excute warm up in the first epoch
                    if self.warup_step > 0:
                        if self.iter_num < self.warup_step:
                            for param_group in self.optimizer.param_groups:
                                param_group['lr'] = self.iter_num / float(
                                    self.warup_step) * self.init_lr
                                lr = param_group['lr']

                            logger.info('warm up with learning rate: [%f]' %
                                        (lr))

                start = time.time()

                if cfg.TRAIN.vis:
                    for i in range(image.shape[0]):

                        img = image[i].numpy()
                        img = np.transpose(img, axes=[1, 2, 0])
                        hm = hm_target[i].numpy()
                        wh = wh_target[i].numpy()

                        if cfg.DATA.use_int8_data:
                            hm = hm[:, :, 0].astype(np.uint8)
                            wh = wh[:, :, 0]
                        else:
                            hm = hm[:, :, 0].astype(np.float32)
                            wh = wh[:, :, 0].astype(np.float32)

                        cv2.namedWindow('s_hm', 0)
                        cv2.imshow('s_hm', hm)
                        cv2.namedWindow('s_wh', 0)
                        cv2.imshow('s_wh', wh + 1)
                        cv2.namedWindow('img', 0)
                        cv2.imshow('img', img)
                        cv2.waitKey(0)
                else:
                    data = image.to(self.device).float()

                    if cfg.DATA.use_int8_data:
                        hm_target = hm_target.to(
                            self.device).float() / cfg.DATA.use_int8_enlarge
                    else:
                        hm_target = hm_target.to(self.device).float()
                    wh_target = wh_target.to(self.device).float()
                    weights = weights.to(self.device).float()

                    batch_size = data.shape[0]

                    cls, wh = self.model(data)

                    cls_loss, wh_loss = self.criterion(
                        [cls, wh], [hm_target, wh_target, weights])

                    current_loss = cls_loss + wh_loss
                    summary_loss_cls.update(cls_loss.detach().item(),
                                            batch_size)
                    summary_loss_wh.update(wh_loss.detach().item(), batch_size)
                    self.optimizer.zero_grad()

                    if cfg.TRAIN.mix_precision:
                        with amp.scale_loss(current_loss,
                                            self.optimizer) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        current_loss.backward()

                    self.optimizer.step()
                    if cfg.TRAIN.ema:
                        self.ema.update()
                    self.iter_num += 1
                    time_cost_per_batch = time.time() - start

                    images_per_sec = cfg.TRAIN.batch_size * cfg.TRAIN.num_gpu / time_cost_per_batch

                    if self.iter_num % cfg.TRAIN.log_interval == 0:

                        log_message = '[TRAIN], '\
                                      'Epoch %d Step %d, ' \
                                      'summary_loss: %.6f, ' \
                                      'cls_loss: %.6f, '\
                                      'wh_loss: %.6f, ' \
                                      'time: %.6f, '\
                                      'speed %d images/persec'% (
                                          epoch_num,
                                          self.iter_num,
                                          summary_loss_cls.avg+summary_loss_wh.avg,
                                          summary_loss_cls.avg ,
                                          summary_loss_wh.avg,
                                          time.time() - start,
                                          images_per_sec)
                        logger.info(log_message)

                if cfg.TRAIN.SWA > 0 and epoch_num >= cfg.TRAIN.SWA:
                    self.optimizer.update_swa()

            return summary_loss_cls, summary_loss_wh

        def test_epoch(epoch_num):
            summary_loss_cls = AverageMeter()
            summary_loss_wh = AverageMeter()

            self.model.eval()
            t = time.time()
            with torch.no_grad():
                for step, (image, hm_target, wh_target,
                           weights) in enumerate(self.val_ds):

                    data = image.to(self.device).float()

                    if cfg.DATA.use_int8_data:
                        hm_target = hm_target.to(
                            self.device).float() / cfg.DATA.use_int8_enlarge
                    else:
                        hm_target = hm_target.to(self.device).float()

                    wh_target = wh_target.to(self.device).float()
                    weights = weights.to(self.device).float()
                    batch_size = data.shape[0]

                    with torch.no_grad():
                        cls, wh = self.model(data)

                    cls_loss, wh_loss = self.criterion(
                        [cls, wh], [hm_target, wh_target, weights])

                    summary_loss_cls.update(cls_loss.detach().item(),
                                            batch_size)
                    summary_loss_wh.update(wh_loss.detach().item(), batch_size)

                    if step % cfg.TRAIN.log_interval == 0:

                        log_message =   '[VAL], '\
                                        'Epoch %d Step %d, ' \
                                        'summary_loss: %.6f, ' \
                                        'cls_loss: %.6f, '\
                                        'wh_loss: %.6f, ' \
                                        'time: %.6f' % (epoch_num,
                                                        step,
                                                        summary_loss_cls.avg+summary_loss_wh.avg,
                                                        summary_loss_cls.avg,
                                                        summary_loss_wh.avg,
                                                        time.time() - t)

                        logger.info(log_message)

            return summary_loss_cls, summary_loss_wh

        for epoch in range(self.epochs):

            for param_group in self.optimizer.param_groups:
                lr = param_group['lr']
            logger.info('learning rate: [%f]' % (lr))
            t = time.time()

            summary_loss_cls, summary_loss_wh = train_epoch(epoch)

            train_epoch_log_message = '[centernet], '\
                                      '[RESULT]: Train. Epoch: %d,' \
                                      ' summary_loss: %.5f,' \
                                      ' cls_loss: %.6f, ' \
                                      ' wh_loss: %.6f, ' \
                                      ' time:%.5f' % (epoch,
                                                      summary_loss_cls.avg+summary_loss_wh.avg,
                                                      summary_loss_cls.avg,
                                                      summary_loss_wh.avg,
                                                      (time.time() - t))
            logger.info(train_epoch_log_message)

            if cfg.TRAIN.SWA > 0 and epoch >= cfg.TRAIN.SWA:

                ###switch to avg model
                self.optimizer.swap_swa_sgd()

            ##switch eam weighta
            if cfg.TRAIN.ema:
                self.ema.apply_shadow()

            if epoch % cfg.TRAIN.test_interval == 0:

                summary_loss_cls, summary_loss_wh = test_epoch(epoch)

                val_epoch_log_message = '[centernet], '\
                                        '[RESULT]: VAL. Epoch: %d,' \
                                        ' summary_loss: %.5f,' \
                                        ' cls_loss: %.6f, ' \
                                        ' wh_loss: %.6f, ' \
                                        ' time:%.5f' % (epoch,
                                                        summary_loss_cls.avg+summary_loss_wh.avg,
                                                        summary_loss_cls.avg,
                                                        summary_loss_wh.avg,
                                                        (time.time() - t))
                logger.info(val_epoch_log_message)

            self.scheduler.step()
            # self.scheduler.step(final_scores.avg)

            #### save model
            if not os.access(cfg.MODEL.model_path, os.F_OK):
                os.mkdir(cfg.MODEL.model_path)

            #### save the model every end of epoch
            current_model_saved_name = './model/centernet_epoch_%d_val_loss%.6f.pth' % (
                epoch, summary_loss_cls.avg + summary_loss_wh.avg)

            logger.info('A model saved to %s' % current_model_saved_name)
            torch.save(self.model.module.state_dict(),
                       current_model_saved_name)

            ####switch back
            if cfg.TRAIN.ema:
                self.ema.restore()

            if cfg.TRAIN.SWA > 0 and epoch > cfg.TRAIN.SWA:
                ###switch back to plain model to train next epoch
                self.optimizer.swap_swa_sgd()

    def load_weight(self):
        if cfg.MODEL.pretrained_model is not None:
            state_dict = torch.load(cfg.MODEL.pretrained_model,
                                    map_location=self.device)
            self.model.load_state_dict(state_dict, strict=False)