def read_gt(): loader = dataset_factory(phase='eval', cfg=cfg) dataset = loader.dataset gts = [] bs = cfg.DATASET.EVAL_BATCH_SIZE for batch_idx, (images, targets, etc) in enumerate(loader): start = batch_idx*bs end = min(batch_idx*bs + bs, len(dataset)) img_paths = [dataset._imgpath % dataset.ids[idx] for idx in range(start, end)] for p, t in zip(img_paths, targets): df = pd.DataFrame(t.numpy(), columns=['xmin', 'ymin', 'xmax', 'ymax', 'class']) df_head = pd.DataFrame([[p]], columns=['path'], index=range(len(t))) df = pd.concat([df_head, df], axis=1) gts.append(df) gt = pd.concat(gts, axis=0, ignore_index=True) with pd.HDFStore('./cache/voc.hdf') as hdf: hdf.put('gt', gt, format='table', data_columns=True) print(gt)
def test_vis(): cfg_name = 'test_data_voc' cfg_path = osp.join(cfg.GENERAL.CFG_ROOT, 'tests', cfg_name+'.yml') merge_cfg_from_file(cfg_path) val_loader = dataset_factory(phase='train', cfg=cfg) dataset = val_loader.dataset log_dir = osp.join(osp.join(cfg.LOG.ROOT_DIR, 'tests' + '_' + cfg_name)) # tb_writer = TBWriter(log_dir, {'aug_vis_list': [3, 4, 5, 6, 8]}) tb_writer = TBWriter(log_dir, {'aug_vis_list': [4, 5, 8]}) # tb_writer = None for img_idx in range(len(dataset)): # if img_idx >= 100: # break tb_writer.cfg['aug'] = True tb_writer.cfg['steps'] = img_idx tb_writer.cfg['img_id'] = img_idx tb_writer.cfg['thick'] = 1 image, target, extra = dataset.pull_item(img_idx, tb_writer) print(image.shape) tb_writer.writer.file_writer.flush()
def train(): tb_writer, cfg_path, snapshot_dir, log_dir = setup_folder(args, cfg) step_index = 0 train_loader = dataset_factory(phase='train', cfg=cfg) val_loader = dataset_factory(phase='eval', cfg=cfg) eval_solver = eval_solver_factory(val_loader, cfg) ssd_net, priors, _ = model_factory(phase='train', cfg=cfg, tb_writer=tb_writer) net = ssd_net # net is the parallel version of ssd_net print(net) print(cfg.TRAIN.OPTIMIZER) # return if args.cuda: net = torch.nn.DataParallel(ssd_net) priors = Variable(priors.cuda(), volatile=True) else: priors = Variable(priors) if args.resume: print('Resuming training, loading {}...'.format(args.resume)) checkpoint = torch.load(args.resume) args.start_iter = checkpoint['iteration'] step_index = checkpoint['step_index'] ssd_net.load_state_dict(checkpoint['state_dict']) else: # pretained weights pretrained_weights = torch.load(osp.join(cfg.GENERAL.WEIGHTS_ROOT, args.basenet)) print('Loading base network...') try: ssd_net.base.load_state_dict(pretrained_weights) except: model_dict = ssd_net.base.state_dict() pretrained_weights = {k: v for k, v in pretrained_weights.items() if k in model_dict} model_dict.update(pretrained_weights) ssd_net.base.load_state_dict(model_dict) # initialize newly added layers' weights with xavier method print('Initializing weights...') ssd_net.extras.apply(weights_init) ssd_net.loc.apply(weights_init) ssd_net.conf.apply(weights_init) if args.cuda: net = net.cuda() optimizer = optim.SGD(net.parameters(), lr=cfg.TRAIN.OPTIMIZER.LR, momentum=cfg.TRAIN.OPTIMIZER.MOMENTUM, weight_decay=cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY) criterion = MultiBoxLoss(cfg.MODEL.NUM_CLASSES, 0.5, True, 0, True, 3, 0.5, False, args.cuda) # continue training at 8w, 12w... if args.start_iter not in cfg.TRAIN.LR_SCHEDULER.STEPS and step_index != 0: adjust_learning_rate(optimizer, cfg.TRAIN.LR_SCHEDULER.GAMMA, step_index) net.train() epoch_size = len(train_loader.dataset) // cfg.DATASET.TRAIN_BATCH_SIZE num_epochs = (cfg.TRAIN.MAX_ITER + epoch_size - 1) // epoch_size print('Training SSD on:', train_loader.dataset.name) print('Using the specified args:') print(args) # timer t_ = {'network': Timer(), 'misc': Timer(), 'all': Timer(), 'eval': Timer()} t_['all'].tic() iteration = args.start_iter for epoch in range(num_epochs): tb_writer.cfg['epoch'] = epoch for images, targets, _ in train_loader: tb_writer.cfg['iteration'] = iteration # t_['misc'].tic() # if iteration in cfg.TRAIN.LR_SCHEDULER.STEPS: # t_['misc'].tic() # step_index += 1 # adjust_learning_rate(optimizer, cfg.TRAIN.LR_SCHEDULER.GAMMA, step_index) # # if args.cuda: # images = Variable(images.cuda()) # targets = [Variable(ann.cuda(), volatile=True) for ann in targets] # else: # images = Variable(images) # targets = [Variable(ann, volatile=True) for ann in targets] # # forward # t_['network'].tic() # out = net(images) # out1 = [out[0], out[1], priors] # # # backward # optimizer.zero_grad() # loss_l, loss_c = criterion(out1, targets) # loss = loss_l + loss_c # loss.backward() # optimizer.step() # t_['network'].toc() # # # log # if iteration % cfg.TRAIN.LOG_LOSS_ITER == 0: # t_['misc'].toc() # print('Iter ' + str(iteration) + ' || Loss: %.3f' % (loss.data[0]) + # '|| conf_loss: %.3f' % (loss_c.data[0]) + ' || loc loss: %.3f ' % (loss_l.data[0]), end=' ') # print('Timer: %.3f sec.' % t_['misc'].diff, ' Lr: %.6f' % optimizer.param_groups[0]['lr']) # if args.tensorboard: # phase = tb_writer.cfg['phase'] # tb_writer.writer.add_scalar('{}/loc_loss'.format(phase), loss_l.data[0], iteration) # tb_writer.writer.add_scalar('{}/conf_loss'.format(phase), loss_c.data[0], iteration) # tb_writer.writer.add_scalar('{}/all_loss'.format(phase), loss.data[0], iteration) # tb_writer.writer.add_scalar('{}/time'.format(phase), t_['misc'].diff, iteration) # # # save model # if iteration % cfg.TRAIN.SAVE_ITER == 0 and iteration != args.start_iter or \ # iteration == cfg.TRAIN.MAX_ITER: # print('Saving state, iter:', iteration) # save_checkpoint({'iteration': iteration, # 'step_index': step_index, # 'state_dict': ssd_net.state_dict()}, # snapshot_dir, # args.cfg_name + '_' + repr(iteration) + '.pth') # Eval if (iteration % cfg.TRAIN.EVAL_ITER == 0 ) or \ iteration == cfg.TRAIN.MAX_ITER: print('Start evaluation ......') tb_writer.cfg['phase'] = 'eval' t_['eval'].tic() net.eval() aps, mAPs = eval_solver.validate(net, priors, tb_writer=tb_writer) net.train() t_['eval'].toc() print('Iteration ' + str(iteration) + ' || mAP: %.3f' % mAPs[0] + ' ||eval_time: %.4f/%.4f' % (t_['eval'].diff, t_['eval'].average_time)) if cfg.DATASET.NAME == 'VOC0712': tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) else: tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[1], iteration) tb_writer.cfg['phase'] = 'train' return if iteration == cfg.TRAIN.MAX_ITER: break iteration += 1 backup_jobs(cfg, cfg_path, log_dir)
def test_loader(): # TODO: a strange bug: datasets loader hangs in cpu mode os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Specified GPUs range val_loader = dataset_factory(phase='eval', cfg=cfg) for i, (images, targets, extra) in enumerate(val_loader): print(i)
tb_writer, cfg_path, snapshot_dir, log_dir = setup_folder(args, cfg, phase='eval') merge_cfg_from_file(cfg_path) cfg.DATASET.NUM_EVAL_PICS = 0 # args.trained_model = './results/vgg16_ssd_coco_24.4.pth' # args.trained_model = './results/ssd300_mAP_77.43_v2.pth' args.trained_model = 'dangercar_5000.pth' model_dir = osp.join(snapshot_dir, args.trained_model) print('eval model:{}'.format(model_dir)) setup_cuda(cfg, args.cuda, args.devices) np.set_printoptions(precision=3, suppress=True, edgeitems=4) loader = dataset_factory(phase='eval', cfg=cfg) # load net net, priors, _ = model_factory(phase='eval', cfg=cfg) # net.load_state_dict(torch.load(model_dir)['state_dict'].state_dict()) net = torch.load(model_dir)['state_dict'] # import pdb # pdb.set_trace() if args.cuda: net = torch.nn.DataParallel(net) net = net.cuda() priors = Variable(priors.cuda(), volatile=True) else: priors = Variable(priors) net.eval()
def train(): tb_writer, cfg_path, snapshot_dir, log_dir = setup_folder(args, cfg) step_index = 0 train_loader = dataset_factory(phase='train', cfg=cfg) val_loader = dataset_factory(phase='eval', cfg=cfg) eval_solver = eval_solver_factory(val_loader, cfg) ssd_net, priors, _ = model_factory(phase='train', cfg=cfg) net = ssd_net # net is the parallel version of ssd_net print(net) if args.resume: print('Resuming training, loading {}...'.format(args.resume)) checkpoint = torch.load(args.resume) args.start_iter = checkpoint['iteration'] + 1 step_index = checkpoint['step_index'] ssd_net.load_state_dict(checkpoint['state_dict']) elif cfg.MODEL.PRETRAIN_MODEL != '': # pretained weights pretrain_weights = torch.load(cfg.MODEL.PRETRAIN_MODEL) if 'reducedfc' not in cfg.MODEL.PRETRAIN_MODEL: ssd_net.apply(weights_init) try: ssd_net.load_state_dict(pretrain_weights['state_dict'], strict=False) except RuntimeError: # another dataset entries = [ i for i in pretrain_weights['state_dict'].keys() if i.startswith('conf') ] for key in entries: del pretrain_weights['state_dict'][key] ssd_net.load_state_dict(pretrain_weights['state_dict'], strict=False) else: print('Loading base network...') ssd_net.base.load_state_dict(pretrain_weights) # initialize newly added layers' weights with xavier method print('Initializing weights...') ssd_net.extras.apply(weights_init) ssd_net.loc.apply(weights_init) ssd_net.conf.apply(weights_init) else: print('Initializing weights...') ssd_net.apply(weights_init) ssd_net.extras.apply(weights_init) ssd_net.loc.apply(weights_init) ssd_net.conf.apply(weights_init) optimizer = optim.SGD(net.parameters(), lr=cfg.TRAIN.OPTIMIZER.LR, momentum=cfg.TRAIN.OPTIMIZER.MOMENTUM, weight_decay=cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY) if args.cuda: net = torch.nn.DataParallel(ssd_net, device_ids=cfg.GENERAL.NET_CPUS) priors = Variable(priors.cuda(cfg.GENERAL.LOSS_GPU), requires_grad=False) net = net.cuda() else: priors = Variable(priors, requires_grad=False) ssd_net.priors = priors ssd_net.criterion = DetectLoss(cfg) criterion_post = DetectLossPost(cfg) net.train() print('Using the specified args: \n', args) epoch_size = len(train_loader.dataset) // cfg.DATASET.TRAIN_BATCH_SIZE num_epochs = (cfg.TRAIN.MAX_ITER + epoch_size - 1) // epoch_size iteration = args.start_iter start_epoch = int(iteration * 1.0 / epoch_size) # continue training at 8w, 12w... if step_index > 0: adjust_learning_rate(optimizer, cfg.TRAIN.OPTIMIZER.LR, cfg.TRAIN.LR_SCHEDULER.GAMMA, 100, step_index, None, None) # timer t_ = {'network': Timer(), 'misc': Timer(), 'eval': Timer()} t_['misc'].tic() iteration = args.start_iter for epoch in range(start_epoch, num_epochs): for images, targets, _ in train_loader: if iteration in cfg.TRAIN.LR_SCHEDULER.STEPS or ( iteration <= cfg.TRAIN.WARMUP_EPOCH * epoch_size): if iteration in cfg.TRAIN.LR_SCHEDULER.STEPS: step_index += 1 adjust_learning_rate(optimizer, cfg.TRAIN.OPTIMIZER.LR, cfg.TRAIN.LR_SCHEDULER.GAMMA, epoch, step_index, iteration, epoch_size, cfg.TRAIN.WARMUP_EPOCH) # save model if iteration % cfg.TRAIN.SAVE_ITER == 0 and iteration != args.start_iter or \ iteration == cfg.TRAIN.MAX_ITER: print('Saving state, iter:', iteration) save_checkpoint( { 'iteration': iteration, 'step_index': step_index, 'state_dict': ssd_net.state_dict() }, snapshot_dir, args.cfg_name + '_' + repr(iteration) + '.pth') # Eval if iteration % cfg.TRAIN.EVAL_ITER == 0 or iteration == cfg.TRAIN.MAX_ITER: t_['eval'].tic() net.eval() aps, mAPs = eval_solver.validate(net, priors, tb_writer=tb_writer) net.train() t_['eval'].toc() print('Iteration ' + str(iteration) + ' || mAP: %.3f' % mAPs[0] + ' ||eval_time: %.4f/%.4f' % (t_['eval'].diff, t_['eval'].average_time)) if tb_writer is not None: if cfg.DATASET.NAME == 'VOC0712' or 'FACE': tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) else: tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[1], iteration) if iteration == cfg.TRAIN.MAX_ITER: break if args.cuda: images = Variable(images.cuda(), requires_grad=False) targets = [ Variable(ann.cuda(cfg.GENERAL.LOSS_GPU), volatile=True) for ann in targets ] else: images = Variable(images) targets = [Variable(ann, volatile=True) for ann in targets] # forward t_['network'].tic() match_result = matching(targets, priors, cfg.LOSS.OVERLAP_THRESHOLD, cfg.MODEL.VARIANCE, args.cuda, cfg.GENERAL.LOSS_GPU, cfg=cfg) net_outputs = net(images, match_result=match_result, tb_writer=tb_writer) loss, (loss_l, loss_c) = criterion_post(net_outputs) loss_str = ' || Loss: %.3f' % ( loss.data[0]) + '|| conf_loss: %.3f' % ( loss_c) + ' || loc_loss: %.3f ' % (loss_l) # backward optimizer.zero_grad() loss.backward() optimizer.step() t_['network'].toc() t_['misc'].toc() # log if iteration % cfg.TRAIN.LOG_LOSS_ITER == 0: current_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) print('Iter ' + str(iteration) + loss_str, end=' ') print( 'Timer: %.3f(%.3f) %.3f(%.3f) sec.' % (t_['misc'].diff, t_['misc'].average_time, t_['network'].diff, t_['network'].average_time), 'lr: %.6f' % optimizer.param_groups[0]['lr'], ' sys_time:', current_date) if tb_writer is not None: phase = 'train' tb_writer.writer.add_scalar('{}/loc_loss'.format(phase), loss_l, iteration) tb_writer.writer.add_scalar('{}/conf_loss'.format(phase), loss_c, iteration) tb_writer.writer.add_scalar('{}/all_loss'.format(phase), loss.data[0], iteration) tb_writer.writer.add_scalar('{}/time'.format(phase), t_['misc'].diff, iteration) iteration += 1 t_['misc'].tic()
def train(): tb_writer, cfg_path, snapshot_dir, log_dir = setup_folder(args, cfg) print(cfg_path) step_index = 0 train_loader = dataset_factory(phase='train', cfg=cfg) val_loader = dataset_factory(phase='eval', cfg=cfg) eval_solver = eval_solver_factory(val_loader, cfg) cls_net = clsmodel_factory(phase='train', cfg=cfg) net = cls_net # net is the parallel version of cls_net print(net) if args.shownet: return; if args.cuda: net = torch.nn.DataParallel(cls_net, device_ids=cfg.GENERAL.NET_CPUS) cls_net.apply(weights_init) if args.resume: print('Resuming training, loading {}...'.format(args.resume)) checkpoint = torch.load(args.resume) args.start_iter = checkpoint['iteration'] step_index = checkpoint['step_index'] cls_net.load_state_dict(checkpoint['state_dict'].state_dict()) elif args.pretrain: # pretained weights print('Loading pretrained model: {}'.format(cfg.MODEL.PRETRAIN_MODEL)) pretrain_weights = torch.load(cfg.MODEL.PRETRAIN_MODEL) if 'reducedfc' not in cfg.MODEL.PRETRAIN_MODEL: print('Loading whole network...') cls_net.load_state_dict(pretrain_weights['state_dict'].state_dict(), strict=False) # cls_net.apply(weights_init) # try: # cls_net.load_state_dict(pretrain_weights, strict=False) # except RuntimeError: # another dataset # entries = [i for i in pretrain_weights['state_dict'].keys() if i.startswith('conf')] # for key in entries: # del pretrain_weights['state_dict'][key] # cls_net.load_state_dict(pretrain_weights['state_dict'], strict=False) else: print('Loading base network...') cls_net.base.load_state_dict(pretrain_weights['state_dict'].state_dict(), strict=False) else: cls_net.apply(weights_init) print('random init net weight with xavier') if args.cuda: net = net.cuda() optimizer = optim.SGD(net.parameters(), lr=cfg.TRAIN.OPTIMIZER.LR, momentum=cfg.TRAIN.OPTIMIZER.MOMENTUM, weight_decay=cfg.TRAIN.OPTIMIZER.WEIGHT_DECAY) # criterion = MultiBoxLoss(cfg, args.cuda) # cls_net.criterion = DetectLoss(cfg) # criterion_post = DetectLossPost(cfg) # criterion_post = nn.BCEWithLogitsLoss() criterion_post = FocalLoss_BCE(alpha=0.8,gamma=2,num_classes=1) # criterion_post = FocalLoss_BCE(alpha=0.5,gamma=0,num_classes=1) # continue training at 8w, 12w... if args.start_iter not in cfg.TRAIN.LR_SCHEDULER.STEPS and step_index != 0: adjust_learning_rate(optimizer, cfg.TRAIN.OPTIMIZER.LR, cfg.TRAIN.LR_SCHEDULER.GAMMA, 100, step_index, None, None) net.train() epoch_size = len(train_loader.dataset) // cfg.DATASET.TRAIN_BATCH_SIZE num_epochs = (cfg.TRAIN.MAX_ITER - args.start_iter + epoch_size - 1) // epoch_size print('Training SSD on:', train_loader.dataset.name) print('Using the specified args:') print(args) # timer t_ = {'network': Timer(), 'forward': Timer(), 'misc': Timer(), 'all': Timer(), 'eval': Timer()} t_['all'].tic() iteration = args.start_iter epoch_bias = int(iteration/epoch_size) for epoch in range(num_epochs): epoch += epoch_bias tb_writer.cfg['epoch'] = epoch for images,targets,_ in train_loader: tb_writer.cfg['iteration'] = iteration t_['misc'].tic() if iteration in cfg.TRAIN.LR_SCHEDULER.STEPS or \ (epoch < cfg.TRAIN.WARMUP_EPOCH and not args.resume): if epoch >= cfg.TRAIN.WARMUP_EPOCH: step_index += 1 adjust_learning_rate(optimizer, cfg.TRAIN.OPTIMIZER.LR, cfg.TRAIN.LR_SCHEDULER.GAMMA, epoch, step_index, iteration, epoch_size, cfg.TRAIN.WARMUP_EPOCH) # save model if iteration % cfg.TRAIN.SAVE_ITER == 0 and iteration != args.start_iter or \ iteration == cfg.TRAIN.MAX_ITER: print('Saving state, iter:', iteration) save_checkpoint({'iteration': iteration, 'step_index': step_index, 'state_dict': cls_net}, snapshot_dir, args.cfg_name + '_' + repr(iteration) + '.pth') # Eval if iteration % cfg.TRAIN.EVAL_ITER == 0 or iteration == cfg.TRAIN.MAX_ITER: tb_writer.cfg['phase'] = 'eval' tb_writer.cfg['iter'] = iteration t_['eval'].tic() net.eval() if torch.cuda.is_available(): net = nn.DataParallel(net, device_ids=[0]) aps, mAPs = eval_solver.validate(net, tb_writer=tb_writer) net.train() if torch.cuda.is_available(): net = torch.nn.DataParallel(cls_net, device_ids=cfg.GENERAL.NET_CPUS) t_['eval'].toc() print('Iteration ' + str(iteration) + ' || mAP: %.3f' % mAPs[0] + ' ||eval_time: %.4f/%.4f' % (t_['eval'].diff, t_['eval'].average_time)) if cfg.DATASET.NAME == 'VOC0712': tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) else: tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[0], iteration) tb_writer.writer.add_scalar('mAP/[email protected]', mAPs[1], iteration) tb_writer.cfg['phase'] = 'train' if iteration == cfg.TRAIN.MAX_ITER: break targets = torch.stack(targets) if args.cuda: images = Variable(images.cuda(), requires_grad=False) # targets = [Variable(ann.cuda(cfg.GENERAL.LOSS_GPU), volatile=True) # for ann in targets] targets = Variable(targets.cuda(cfg.GENERAL.LOSS_GPU), requires_grad=False) else: images = Variable(images) # targets = [Variable(ann, volatile=True) for ann in targets] targets = Variable(targets, requires_grad=False) # forward t_['network'].tic() t_['forward'].tic() net_outputs = net(images) t_['forward'].toc() # import pdb # pdb.set_trace() # net_outputs = net_outputs.view(1,-1) # targets = targets.view(1,-1) loss = criterion_post(net_outputs,targets) # backward optimizer.zero_grad() loss.backward() optimizer.step() t_['network'].toc() # log if iteration % cfg.TRAIN.LOG_LOSS_ITER == 0 or iteration == 1: t_['misc'].toc() now_time = datetime.datetime.now() time_str = datetime.datetime.strftime(now_time,'%Y-%m-%d %H:%M:%S') print(time_str+'\tIter ' + str(iteration) + ' || Loss: %.3f' % (loss.data[0]), end=' ') print('Forward Timer: %.3f sec.' % t_['forward'].diff, ' Lr: %.6f' % optimizer.param_groups[0]['lr']) if args.tensorboard: phase = tb_writer.cfg['phase'] tb_writer.writer.add_scalar('{}/all_loss'.format(phase), loss.data[0], iteration) tb_writer.writer.add_scalar('{}/time'.format(phase), t_['misc'].diff, iteration) iteration += 1 backup_jobs(cfg, cfg_path, log_dir)