def face_landmarks(v): global face_reg if face_reg is None: face_reg = sparse_to_tensor( pkl.load(open(os.path.join(os.path.dirname(__file__), '../assets/face_regressor.pkl'), 'rb')).T ) return sparse_dense_matmul_batch_tile(face_reg, v)
def joints_body25(v): global body_25_reg if body_25_reg is None: body_25_reg = sparse_to_tensor( pkl.load(open(os.path.join(os.path.dirname(__file__), '../assets/J_regressor.pkl'), 'rb')).T ) return sparse_dense_matmul_batch_tile(body_25_reg, v)
def __init__(self, num=8, img_size=1080): self.num = num self.img_size = img_size self.inputs = [] self.poses = [] self.ts = [] images = [ Input(shape=(self.img_size, self.img_size, 3), name='image_{}'.format(i)) for i in range(self.num) ] Js = [ Input(shape=(25, 3), name='J_2d_{}'.format(i)) for i in range(self.num) ] self.inputs.extend(images) self.inputs.extend(Js) pose_raw = np.load( os.path.join(os.path.dirname(__file__), '../assets/mean_a_pose.npy')) pose_raw[:3] = 0. pose = tf.reshape( batch_rodrigues(pose_raw.reshape(-1, 3).astype(np.float32)), (-1, )) trans = np.array([0., 0.2, -2.3]) batch_size = tf.shape(images[0])[0] conv2d_0 = Conv2D(8, (3, 3), strides=(2, 2), activation='relu', kernel_initializer='he_normal', trainable=False) maxpool_0 = MaxPool2D((2, 2)) conv2d_1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', trainable=False) maxpool_1 = MaxPool2D((2, 2)) conv2d_2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', trainable=False) maxpool_2 = MaxPool2D((2, 2)) conv2d_3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', trainable=False) maxpool_3 = MaxPool2D((2, 2)) conv2d_4 = Conv2D(128, (3, 3), trainable=False) maxpool_4 = MaxPool2D((2, 2)) flat = Flatten() self.image_features = flat latent_code = Dense(20, name='latent_shape') pose_trans = tf.tile( tf.expand_dims(tf.concat((trans, pose), axis=0), 0), (batch_size, 1)) posetrans_init = Input(tensor=pose_trans, name='posetrans_init') self.inputs.append(posetrans_init) J_flat = Flatten() concat_pose = Concatenate() latent_pose_from_I = Dense(200, name='latent_pose_from_I', activation='relu', trainable=False) latent_pose_from_J = Dense(200, name='latent_pose_from_J', activation='relu', trainable=False) latent_pose = Dense(100, name='latent_pose') posetrans_res = Dense(24 * 3 * 3 + 3, name='posetrans_res', kernel_initializer=RandomNormal(stddev=0.01), trainable=False) posetrans = Add(name='posetrans') dense_layers = [] for i, (J, image) in enumerate(zip(Js, images)): conv2d_0_i = conv2d_0(image) maxpool_0_i = maxpool_0(conv2d_0_i) conv2d_1_i = conv2d_1(maxpool_0_i) maxpool_1_i = maxpool_1(conv2d_1_i) conv2d_2_i = conv2d_2(maxpool_1_i) maxpool_2_i = maxpool_2(conv2d_2_i) conv2d_3_i = conv2d_3(maxpool_2_i) maxpool_3_i = maxpool_3(conv2d_3_i) conv2d_4_i = conv2d_4(maxpool_3_i) maxpool_4_i = maxpool_4(conv2d_4_i) # shape flat_i = flat(maxpool_4_i) latent_code_i = latent_code(flat_i) dense_layers.append(latent_code_i) # pose J_flat_i = J_flat(J) latent_pose_from_I_i = latent_pose_from_I(flat_i) latent_pose_from_J_i = latent_pose_from_J(J_flat_i) concat_pose_i = concat_pose( [latent_pose_from_I_i, latent_pose_from_J_i]) latent_pose_i = latent_pose(concat_pose_i) posetrans_res_i = posetrans_res(latent_pose_i) posetrans_i = posetrans([posetrans_res_i, posetrans_init]) self.poses.append( Lambda(lambda x: tf.reshape(x[:, 3:], (-1, 24, 3, 3)), name='pose_{}'.format(i))(posetrans_i)) self.ts.append( Lambda(lambda x: x[:, :3], name='trans_{}'.format(i))(posetrans_i)) if self.num > 1: self.dense_merged = Average( name='merged_latent_shape')(dense_layers) else: self.dense_merged = NameLayer(name='merged_latent_shape')( dense_layers[0]) # betas self.betas = Dense(10, name='betas', trainable=False)(self.dense_merged) with open( os.path.join(os.path.dirname(__file__), '../assets/smpl_sampling.pkl'), 'rb') as f: sampling = pkl.load(f, encoding='iso-8859-1') M = sampling['meshes'] U = sampling['up'] D = sampling['down'] A = sampling['adjacency'] self.faces = M[0]['f'].astype(np.int32) low_res = D[-1].shape[0] tf_U = [sparse_to_tensor(u) for u in U] tf_A = [map(sparse_to_tensor, chebyshev_polynomials(a, 3)) for a in A] shape_features_dense = Dense( low_res * 64, kernel_initializer=RandomNormal(stddev=0.003), name='shape_features_flat')(self.dense_merged) shape_features = Reshape((low_res, 64), name="shape_features")(shape_features_dense) conv_l3 = GraphConvolution(32, tf_A[3], activation='relu', name='conv_l3', trainable=False)(shape_features) unpool_l2 = Lambda(lambda v: sparse_dot_adj_batch(tf_U[2], v), name='unpool_l2')(conv_l3) conv_l2 = GraphConvolution(16, tf_A[2], activation='relu', name='conv_l2', trainable=False)(unpool_l2) unpool_l1 = Lambda(lambda v: sparse_dot_adj_batch(tf_U[1], v), name='unpool_l1')(conv_l2) conv_l1 = GraphConvolution(16, tf_A[1], activation='relu', name='conv_l1', trainable=False)(unpool_l1) unpool_l0 = Lambda(lambda v: sparse_dot_adj_batch(tf_U[0], v), name='unpool_l0')(conv_l1) conv_l0 = GraphConvolution(3, tf_A[0], activation='tanh', name='offsets_pre')(unpool_l0) self.offsets = Lambda(lambda x: x / 10., name='offsets')(conv_l0) smpl = SmplTPoseLayer(theta_in_rodrigues=False, theta_is_perfect_rotmtx=False) smpls = [ NameLayer('smpl_{}'.format(i))(smpl( [p, self.betas, t, self.offsets])) for i, (p, t) in enumerate(zip(self.poses, self.ts)) ] self.vertices = [ Lambda(lambda s: s[0], name='vertices_{}'.format(i))(smpl) for i, smpl in enumerate(smpls) ] # we only need one instance per batch for laplace self.vertices_tposed = Lambda(lambda s: s[1], name='vertices_tposed')(smpls[0]) vertices_naked = Lambda(lambda s: s[2], name='vertices_naked')(smpls[0]) #function_laplacian= def laplacian_function(x, faces=self.faces): v0, v1 = x return compute_laplacian_diff(v0, v1, faces) self.laplacian = Lambda(laplacian_function, name='laplacian')( [self.vertices_tposed, vertices_naked]) self.symmetry = NameLayer('symmetry')(self.vertices_tposed) l = SmplBody25FaceLayer(theta_in_rodrigues=False, theta_is_perfect_rotmtx=False) kps = [ NameLayer('kps_{}'.format(i))(l([p, self.betas, t])) for i, (p, t) in enumerate(zip(self.poses, self.ts)) ] self.Js = [ Lambda(lambda jj: jj[:, :25], name='J_reproj_{}'.format(i))(j) for i, j in enumerate(kps) ] self.face_kps = [ Lambda(lambda jj: jj[:, 25:], name='face_reproj_{}'.format(i))(j) for i, j in enumerate(kps) ] self.repr_loss = reprojection([self.img_size, self.img_size], [self.img_size / 2., self.img_size / 2.], self.img_size, self.img_size) renderer = RenderLayer(self.img_size, self.img_size, 1, np.ones((6890, 1)), np.zeros(1), self.faces, [self.img_size, self.img_size], [self.img_size / 2., self.img_size / 2.], name='render_layer') self.rendered = [ NameLayer('rendered_{}'.format(i))(renderer(v)) for i, v in enumerate(self.vertices) ] self.inference_model = Model( inputs=self.inputs, outputs=[self.vertices_tposed] + self.vertices + [self.betas, self.offsets] + self.poses + self.ts) self.opt_pose_model = Model(inputs=self.inputs, outputs=self.Js) opt_pose_loss = { 'J_reproj_{}'.format(i): self.repr_loss for i in range(self.num) } self.opt_pose_model.compile(loss=opt_pose_loss, optimizer='adam') self.opt_shape_model = Model(inputs=self.inputs, outputs=self.Js + self.face_kps + self.rendered + [self.symmetry, self.laplacian]) opt_shape_loss = { 'laplacian': laplace_mse, 'symmetry': symmetry_mse, } opt_shape_weights = { 'laplacian': 100. * self.num, 'symmetry': 50. * self.num, } for i in range(self.num): opt_shape_loss['rendered_{}'.format(i)] = 'mse' opt_shape_weights['rendered_{}'.format(i)] = 1. opt_shape_loss['J_reproj_{}'.format(i)] = self.repr_loss opt_shape_weights['J_reproj_{}'.format(i)] = 50. opt_shape_loss['face_reproj_{}'.format(i)] = self.repr_loss opt_shape_weights['face_reproj_{}'.format(i)] = 10. * self.num self.opt_shape_model.compile(loss=opt_shape_loss, loss_weights=opt_shape_weights, optimizer='adam')