Example #1
0
    envs = [common.make_env() for _ in range(common.NUM_ENVS)]
    test_env = common.make_env(test=True)

    if args.seed:
        common.set_seed(args.seed, envs, cuda=args.cuda)
        suffix = "-seed=%d" % args.seed
    else:
        suffix = ""
    writer = SummaryWriter(comment="-03_i2a_" + args.name + suffix)

    obs_shape = envs[0].observation_space.shape
    act_n = envs[0].action_space.n

    net_policy = common.AtariA2C(obs_shape, act_n).to(device)

    net_em = i2a.EnvironmentModel(obs_shape, act_n)
    net_em.load_state_dict(torch.load(args.em, map_location=lambda storage, loc: storage))
    net_em = net_em.to(device)

    net_i2a = i2a.I2A(obs_shape, act_n, net_em, net_policy, ROLLOUTS_STEPS).to(device)
    print(net_i2a)

    obs = envs[0].reset()
    obs_v = ptan.agent.default_states_preprocessor([obs]).to(device)
    res = net_i2a(obs_v)

    optimizer = optim.RMSprop(net_i2a.parameters(), lr=LEARNING_RATE, eps=1e-5)
    policy_opt = optim.Adam(net_policy.parameters(), lr=POLICY_LR)

    step_idx = 0
    total_steps = 0
Example #2
0
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, help="Name of the run")
    parser.add_argument("-m", "--model", required=True, help="File with model to load")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    saves_path = os.path.join("saves", "02_env_" + args.name)
    os.makedirs(saves_path, exist_ok=True)

    envs = [common.make_env() for _ in range(NUM_ENVS)]
    writer = SummaryWriter(comment="-02_env_" + args.name)

    net = common.AtariA2C(envs[0].observation_space.shape, envs[0].action_space.n)
    net_em = i2a.EnvironmentModel(envs[0].observation_space.shape, envs[0].action_space.n).to(device)
    net.load_state_dict(torch.load(args.model, map_location=lambda storage, loc: storage))
    net = net.to(device)
    print(net_em)
    optimizer = optim.Adam(net_em.parameters(), lr=LEARNING_RATE)

    step_idx = 0
    best_loss = np.inf
    with ptan.common.utils.TBMeanTracker(writer, batch_size=100) as tb_tracker:
        for mb_obs, mb_obs_next, mb_actions, mb_rewards, done_rewards, done_steps in iterate_batches(envs, net, device):
            if len(done_rewards) > 0:
                m_reward = np.mean(done_rewards)
                m_steps = np.mean(done_steps)
                print("%d: done %d episodes, mean reward=%.2f, steps=%.2f" % (
                    step_idx, len(done_rewards), m_reward, m_steps))
                tb_tracker.track("total_reward", m_reward, step_idx)