Example #1
0
def daeg_to_rotational_superoperator(daeg, Rsuper):
    """Convert the frame order matrix (daeg) to the rotational superoperator.

    @param daeg:    The second degree frame order matrix, daeg.  This must be in the Kronecker product layout.
    @type daeg:     numpy 9D, rank-2 array or numpy 3D, rank-4 array
    @param Rsuper:  The rotational superoperator structure to be populated.
    @type Rsuper:   numpy 5D, rank-2 array
    """

    # First perform the T23 transpose.
    transpose_23(daeg)

    # Convert to rank-4.
    orig_shape = daeg.shape
    daeg.shape = (3, 3, 3, 3)

    # First column of the superoperator.
    Rsuper[0, 0] = daeg[0, 0, 0, 0] - daeg[2, 0, 2, 0]
    Rsuper[1, 0] = daeg[0, 1, 0, 1] - daeg[2, 1, 2, 1]
    Rsuper[2, 0] = daeg[0, 0, 0, 1] - daeg[2, 0, 2, 1]
    Rsuper[3, 0] = daeg[0, 0, 0, 2] - daeg[2, 0, 2, 2]
    Rsuper[4, 0] = daeg[0, 1, 0, 2] - daeg[2, 1, 2, 2]

    # Second column of the superoperator.
    Rsuper[0, 1] = daeg[1, 0, 1, 0] - daeg[2, 0, 2, 0]
    Rsuper[1, 1] = daeg[1, 1, 1, 1] - daeg[2, 1, 2, 1]
    Rsuper[2, 1] = daeg[1, 0, 1, 1] - daeg[2, 0, 2, 1]
    Rsuper[3, 1] = daeg[1, 0, 1, 2] - daeg[2, 0, 2, 2]
    Rsuper[4, 1] = daeg[1, 1, 1, 2] - daeg[2, 1, 2, 2]

    # Third column of the superoperator.
    Rsuper[0, 2] = daeg[0, 0, 1, 0] + daeg[1, 0, 0, 0]
    Rsuper[1, 2] = daeg[0, 1, 1, 1] + daeg[1, 1, 0, 1]
    Rsuper[2, 2] = daeg[0, 0, 1, 1] + daeg[1, 0, 0, 1]
    Rsuper[3, 2] = daeg[0, 0, 1, 2] + daeg[1, 0, 0, 2]
    Rsuper[4, 2] = daeg[0, 1, 1, 2] + daeg[1, 1, 0, 2]

    # Fourth column of the superoperator.
    Rsuper[0, 3] = daeg[0, 0, 2, 0] + daeg[2, 0, 0, 0]
    Rsuper[1, 3] = daeg[0, 1, 2, 1] + daeg[2, 1, 0, 1]
    Rsuper[2, 3] = daeg[0, 0, 2, 1] + daeg[2, 0, 0, 1]
    Rsuper[3, 3] = daeg[0, 0, 2, 2] + daeg[2, 0, 0, 2]
    Rsuper[4, 3] = daeg[0, 1, 2, 2] + daeg[2, 1, 0, 2]

    # Fifth column of the superoperator.
    Rsuper[0, 4] = daeg[1, 0, 2, 0] + daeg[2, 0, 1, 0]
    Rsuper[1, 4] = daeg[1, 1, 2, 1] + daeg[2, 1, 1, 1]
    Rsuper[2, 4] = daeg[1, 0, 2, 1] + daeg[2, 0, 1, 1]
    Rsuper[3, 4] = daeg[1, 0, 2, 2] + daeg[2, 0, 1, 2]
    Rsuper[4, 4] = daeg[1, 1, 2, 2] + daeg[2, 1, 1, 2]

    # Revert the shape.
    daeg.shape = orig_shape

    # Undo the T23 transpose.
    transpose_23(daeg)
Example #2
0
def daeg_to_rotational_superoperator(daeg, Rsuper):
    """Convert the frame order matrix (daeg) to the rotational superoperator.

    @param daeg:    The second degree frame order matrix, daeg.  This must be in the Kronecker product layout.
    @type daeg:     numpy 9D, rank-2 array or numpy 3D, rank-4 array
    @param Rsuper:  The rotational superoperator structure to be populated.
    @type Rsuper:   numpy 5D, rank-2 array
    """

    # First perform the T23 transpose.
    transpose_23(daeg)

    # Convert to rank-4.
    orig_shape = daeg.shape
    daeg.shape = (3, 3, 3, 3)

    # First column of the superoperator.
    Rsuper[0, 0] = daeg[0, 0, 0, 0] - daeg[2, 0, 2, 0]
    Rsuper[1, 0] = daeg[0, 1, 0, 1] - daeg[2, 1, 2, 1]
    Rsuper[2, 0] = daeg[0, 0, 0, 1] - daeg[2, 0, 2, 1]
    Rsuper[3, 0] = daeg[0, 0, 0, 2] - daeg[2, 0, 2, 2]
    Rsuper[4, 0] = daeg[0, 1, 0, 2] - daeg[2, 1, 2, 2]

    # Second column of the superoperator.
    Rsuper[0, 1] = daeg[1, 0, 1, 0] - daeg[2, 0, 2, 0]
    Rsuper[1, 1] = daeg[1, 1, 1, 1] - daeg[2, 1, 2, 1]
    Rsuper[2, 1] = daeg[1, 0, 1, 1] - daeg[2, 0, 2, 1]
    Rsuper[3, 1] = daeg[1, 0, 1, 2] - daeg[2, 0, 2, 2]
    Rsuper[4, 1] = daeg[1, 1, 1, 2] - daeg[2, 1, 2, 2]

    # Third column of the superoperator.
    Rsuper[0, 2] = daeg[0, 0, 1, 0] + daeg[1, 0, 0, 0]
    Rsuper[1, 2] = daeg[0, 1, 1, 1] + daeg[1, 1, 0, 1]
    Rsuper[2, 2] = daeg[0, 0, 1, 1] + daeg[1, 0, 0, 1]
    Rsuper[3, 2] = daeg[0, 0, 1, 2] + daeg[1, 0, 0, 2]
    Rsuper[4, 2] = daeg[0, 1, 1, 2] + daeg[1, 1, 0, 2]

    # Fourth column of the superoperator.
    Rsuper[0, 3] = daeg[0, 0, 2, 0] + daeg[2, 0, 0, 0]
    Rsuper[1, 3] = daeg[0, 1, 2, 1] + daeg[2, 1, 0, 1]
    Rsuper[2, 3] = daeg[0, 0, 2, 1] + daeg[2, 0, 0, 1]
    Rsuper[3, 3] = daeg[0, 0, 2, 2] + daeg[2, 0, 0, 2]
    Rsuper[4, 3] = daeg[0, 1, 2, 2] + daeg[2, 1, 0, 2]

    # Fifth column of the superoperator.
    Rsuper[0, 4] = daeg[1, 0, 2, 0] + daeg[2, 0, 1, 0]
    Rsuper[1, 4] = daeg[1, 1, 2, 1] + daeg[2, 1, 1, 1]
    Rsuper[2, 4] = daeg[1, 0, 2, 1] + daeg[2, 0, 1, 1]
    Rsuper[3, 4] = daeg[1, 0, 2, 2] + daeg[2, 0, 1, 2]
    Rsuper[4, 4] = daeg[1, 1, 2, 2] + daeg[2, 1, 1, 2]

    # Revert the shape.
    daeg.shape = orig_shape

    # Undo the T23 transpose.
    transpose_23(daeg)
    def test_transpose_23(self):
        """Check the 2,3 transpose of a rank-4, 3D tensor."""

        # Manually create the string rep of the transpose.
        daegT = self.string_transpose(2, 3)
        print("The real 2,3 transpose:")
        self.print_nice(daegT)

        # Convert to numpy.
        daegT = self.to_numpy(daegT)

        # Check.
        print("The numerical 2,3 transpose:")
        transpose_23(self.daeg)
        self.print_nice(self.daeg)
        for i in range(9):
            for j in range(9):
                print("i = %2s, j = %2s, daeg[i,j] = %s" % (i, j, daegT[i, j]))
                self.assertEqual(self.daeg[i, j], daegT[i, j])
Example #4
0
    def test_transpose_23(self):
        """Check the 2,3 transpose of a rank-4, 3D tensor."""

        # Manually create the string rep of the transpose.
        daegT = self.string_transpose(2, 3)
        print("The real 2,3 transpose:")
        self.print_nice(daegT)

        # Convert to numpy.
        daegT = self.to_numpy(daegT)

        # Check.
        print("The numerical 2,3 transpose:")
        transpose_23(self.daeg)
        self.print_nice(self.daeg)
        for i in range(9):
            for j in range(9):
                print("i = %2s, j = %2s, daeg[i,j] = %s" % (i, j, daegT[i, j]))
                self.assertEqual(self.daeg[i, j], daegT[i, j])
Example #5
0
    def test_compile_2nd_matrix_pseudo_ellipse_point1(self):
        """Check the operation of the compile_2nd_matrix_pseudo_ellipse() function."""

        # The simulated in frame pseudo-ellipse 2nd degree frame order matrix.
        real = array(
                    [[    0.7901,         0,         0,         0,    0.7118,         0,         0,         0,    0.6851],
                     [         0,    0.0816,         0,   -0.0606,         0,         0,         0,         0,         0],
                     [         0,         0,    0.1282,         0,         0,         0,   -0.1224,         0,         0],
                     [         0,   -0.0606,         0,    0.0708,         0,         0,         0,         0,         0],
                     [    0.7118,         0,         0,         0,    0.6756,         0,         0,         0,    0.6429],
                     [         0,         0,         0,         0,         0,    0.2536,         0,   -0.2421,         0],
                     [         0,         0,   -0.1224,         0,         0,         0,    0.1391,         0,         0],
                     [         0,         0,         0,         0,         0,   -0.2421,         0,    0.2427,         0],
                     [    0.6851,         0,         0,         0,    0.6429,         0,         0,         0,    0.6182]], float64)
        transpose_23(real)

        # Init.
        x = pi/4.0
        y = 3.0*pi/8.0
        z = pi/6.0

        # The Kronecker product of the eigenframe rotation.
        Rx2_eigen = self.calc_Rx2_eigen_full(0.0, 0.0, 0.0)

        # Calculate the matrix.
        f2 = compile_2nd_matrix_pseudo_ellipse(self.f2_temp, Rx2_eigen, x, y, z)

        # Print out.
        print_frame_order_2nd_degree(real, "real")
        print_frame_order_2nd_degree(f2, "calculated")
        print_frame_order_2nd_degree(real-f2, "difference")

        # Check the values.
        for i in range(9):
            for j in range(9):
                print("Element %s, %s; diff %s." % (i, j, f2[i, j] - real[i, j]))
                self.assert_(abs(f2[i, j] - real[i, j]) < 1e-4)
Example #6
0
    def test_compile_2nd_matrix_pseudo_ellipse_point1(self):
        """Check the operation of the compile_2nd_matrix_pseudo_ellipse() function."""

        # The simulated in frame pseudo-ellipse 2nd degree frame order matrix.
        real = array(
                    [[    0.7901,         0,         0,         0,    0.7118,         0,         0,         0,    0.6851],
                     [         0,    0.0816,         0,   -0.0606,         0,         0,         0,         0,         0],
                     [         0,         0,    0.1282,         0,         0,         0,   -0.1224,         0,         0],
                     [         0,   -0.0606,         0,    0.0708,         0,         0,         0,         0,         0],
                     [    0.7118,         0,         0,         0,    0.6756,         0,         0,         0,    0.6429],
                     [         0,         0,         0,         0,         0,    0.2536,         0,   -0.2421,         0],
                     [         0,         0,   -0.1224,         0,         0,         0,    0.1391,         0,         0],
                     [         0,         0,         0,         0,         0,   -0.2421,         0,    0.2427,         0],
                     [    0.6851,         0,         0,         0,    0.6429,         0,         0,         0,    0.6182]], float64)
        transpose_23(real)

        # Init.
        x = pi/4.0
        y = 3.0*pi/8.0
        z = pi/6.0

        # The Kronecker product of the eigenframe rotation.
        Rx2_eigen = self.calc_Rx2_eigen_full(0.0, 0.0, 0.0)

        # Calculate the matrix.
        f2 = compile_2nd_matrix_pseudo_ellipse(self.f2_temp, Rx2_eigen, x, y, z)

        # Print out.
        print_frame_order_2nd_degree(real, "real")
        print_frame_order_2nd_degree(f2, "calculated")
        print_frame_order_2nd_degree(real-f2, "difference")

        # Check the values.
        for i in range(9):
            for j in range(9):
                print("Element %s, %s; diff %s." % (i, j, f2[i, j] - real[i, j]))
                self.assert_(abs(f2[i, j] - real[i, j]) < 1e-4)