def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, mostSpecificRank, minMarkers, completenessThreshold, contaminationThreshold): print 'Ubiquity threshold: ' + str(ubiquityThreshold) print 'Single-copy threshold: ' + str(singleCopyThreshold) print 'Min. genomes: ' + str(minGenomes) print 'Most specific taxonomic rank: ' + str(mostSpecificRank) print 'Min markers: ' + str(minMarkers) print 'Completeness threshold: ' + str(completenessThreshold) print 'Contamination threshold: ' + str(contaminationThreshold) img = IMG() markerset = MarkerSet() lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank) degenerateGenomes = {} for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final') print '' print 'Lineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes.' # get table of PFAMs and do some initial filtering to remove PFAMs that are # clearly not going to pass the ubiquity and single-copy thresholds countTable = img.countTable(genomeIds) countTable = img.filterTable(genomeIds, countTable, ubiquityThreshold*0.9, singleCopyThreshold*0.9) markerGenes = markerset.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds)) if len(markerGenes) < minMarkers: continue geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) for genomeId in genomeIds: completeness, contamination = markerset.genomeCheck(colocatedSets, genomeId, countTable) if completeness < completenessThreshold or contamination > contaminationThreshold: degenerateGenomes[genomeId] = degenerateGenomes.get(genomeId, []) + [[lineage.split(';')[-1].strip(), len(genomeIds), len(colocatedSets), completeness, contamination]] # write out degenerate genomes metadata = img.genomeMetadata('Final') fout = open('./data/degenerate_genomes.tsv', 'w') fout.write('Genome Id\tTaxonomy\tGenome Size (Gbps)\tScaffolds\tBiotic Relationships\tStatus\tLineage\t# genomes\tMarker set size\tCompleteness\tContamination\n') for genomeId, data in degenerateGenomes.iteritems(): fout.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']) + '\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6) + '\t' + str(metadata[genomeId]['scaffold count'])) fout.write('\t' + metadata[genomeId]['biotic relationships'] + '\t' + metadata[genomeId]['status']) for d in data: fout.write('\t' + d[0] + '\t' + str(d[1]) + '\t' + str(d[2]) + '\t%.3f\t%.3f' % (d[3], d[4])) fout.write('\n') fout.close()
def run( self, ubiquityThreshold, singleCopyThreshold, minGenomes, minMarkers, mostSpecificRank, distThreshold, genomeThreshold, ): img = IMG() markerset = MarkerSet() lineages = img.lineagesSorted(mostSpecificRank) fout = open("./data/colocated.tsv", "w", 1) fout.write("Lineage\t# genomes\t# markers\t# co-located sets\tCo-located markers\n") lineageCount = 0 for lineage in lineages: lineageCount += 1 genomeIds = img.genomeIdsByTaxonomy(lineage, "Final") if len(genomeIds) < minGenomes: continue countTable = img.countTable(genomeIds) markerGenes = markerset.markerGenes( genomeIds, countTable, ubiquityThreshold * len(genomeIds), singleCopyThreshold * len(genomeIds) ) geneDistTable = img.geneDistTable(genomeIds, markerGenes) colocatedGenes = markerset.colocatedGenes(geneDistTable, distThreshold, genomeThreshold) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) if len(colocatedSets) < minMarkers: continue print "\nLineage " + lineage + " contains " + str(len(genomeIds)) + " genomes (" + str( lineageCount ) + " of " + str(len(lineages)) + ")." print " Marker genes: " + str(len(markerGenes)) print " Co-located gene sets: " + str(len(colocatedSets)) fout.write( lineage + "\t" + str(len(genomeIds)) + "\t" + str(len(markerGenes)) + "\t" + str(len(colocatedSets)) ) for cs in colocatedSets: fout.write("\t" + ", ".join(cs)) fout.write("\n") fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, minMarkers, mostSpecificRank, distThreshold, genomeThreshold): img = IMG() markerset = MarkerSet() lineages = img.lineagesSorted(mostSpecificRank) fout = open('./data/colocated.tsv', 'w', 1) fout.write( 'Lineage\t# genomes\t# markers\t# co-located sets\tCo-located markers\n' ) lineageCount = 0 for lineage in lineages: lineageCount += 1 genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final') if len(genomeIds) < minGenomes: continue countTable = img.countTable(genomeIds) markerGenes = markerset.markerGenes( genomeIds, countTable, ubiquityThreshold * len(genomeIds), singleCopyThreshold * len(genomeIds)) geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable, distThreshold, genomeThreshold) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) if len(colocatedSets) < minMarkers: continue print '\nLineage ' + lineage + ' contains ' + str(len( genomeIds)) + ' genomes (' + str(lineageCount) + ' of ' + str( len(lineages)) + ').' print ' Marker genes: ' + str(len(markerGenes)) print ' Co-located gene sets: ' + str(len(colocatedSets)) fout.write(lineage + '\t' + str(len(genomeIds)) + '\t' + str(len(markerGenes)) + '\t' + str(len(colocatedSets))) for cs in colocatedSets: fout.write('\t' + ', '.join(cs)) fout.write('\n') fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, minMarkers, mostSpecificRank, distThreshold, genomeThreshold): img = IMG() markerset = MarkerSet() lineages = img.lineagesSorted(mostSpecificRank) fout = open('./data/colocated.tsv', 'w', 1) fout.write('Lineage\t# genomes\t# markers\t# co-located sets\tCo-located markers\n') lineageCount = 0 for lineage in lineages: lineageCount += 1 genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final') if len(genomeIds) < minGenomes: continue countTable = img.countTable(genomeIds) markerGenes = markerset.markerGenes(genomeIds, countTable, ubiquityThreshold*len(genomeIds), singleCopyThreshold*len(genomeIds)) geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable, distThreshold, genomeThreshold) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) if len(colocatedSets) < minMarkers: continue print '\nLineage ' + lineage + ' contains ' + str(len(genomeIds)) + ' genomes (' + str(lineageCount) + ' of ' + str(len(lineages)) + ').' print ' Marker genes: ' + str(len(markerGenes)) print ' Co-located gene sets: ' + str(len(colocatedSets)) fout.write(lineage + '\t' + str(len(genomeIds)) + '\t' + str(len(markerGenes)) + '\t' + str(len(colocatedSets))) for cs in colocatedSets: fout.write('\t' + ', '.join(cs)) fout.write('\n') fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes, mostSpecificRank, minMarkers, completenessThreshold, contaminationThreshold): print 'Ubiquity threshold: ' + str(ubiquityThreshold) print 'Single-copy threshold: ' + str(singleCopyThreshold) print 'Min. genomes: ' + str(minGenomes) print 'Most specific taxonomic rank: ' + str(mostSpecificRank) print 'Min markers: ' + str(minMarkers) print 'Completeness threshold: ' + str(completenessThreshold) print 'Contamination threshold: ' + str(contaminationThreshold) img = IMG() markerset = MarkerSet() lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank) degenerateGenomes = {} for lineage in lineages: genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final') print '' print 'Lineage ' + lineage + ' contains ' + str( len(genomeIds)) + ' genomes.' # get table of PFAMs and do some initial filtering to remove PFAMs that are # clearly not going to pass the ubiquity and single-copy thresholds countTable = img.countTable(genomeIds) countTable = img.filterTable(genomeIds, countTable, ubiquityThreshold * 0.9, singleCopyThreshold * 0.9) markerGenes = markerset.markerGenes( genomeIds, countTable, ubiquityThreshold * len(genomeIds), singleCopyThreshold * len(genomeIds)) if len(markerGenes) < minMarkers: continue geneDistTable = img.geneDistTable(genomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) for genomeId in genomeIds: completeness, contamination = markerset.genomeCheck( colocatedSets, genomeId, countTable) if completeness < completenessThreshold or contamination > contaminationThreshold: degenerateGenomes[genomeId] = degenerateGenomes.get( genomeId, []) + [[ lineage.split(';')[-1].strip(), len(genomeIds), len(colocatedSets), completeness, contamination ]] # write out degenerate genomes metadata = img.genomeMetadata('Final') fout = open('./data/degenerate_genomes.tsv', 'w') fout.write( 'Genome Id\tTaxonomy\tGenome Size (Gbps)\tScaffolds\tBiotic Relationships\tStatus\tLineage\t# genomes\tMarker set size\tCompleteness\tContamination\n' ) for genomeId, data in degenerateGenomes.iteritems(): fout.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy']) + '\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6) + '\t' + str(metadata[genomeId]['scaffold count'])) fout.write('\t' + metadata[genomeId]['biotic relationships'] + '\t' + metadata[genomeId]['status']) for d in data: fout.write('\t' + d[0] + '\t' + str(d[1]) + '\t' + str(d[2]) + '\t%.3f\t%.3f' % (d[3], d[4])) fout.write('\n') fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, trustedCompleteness, trustedContamination, genomeCompleteness, genomeContamination): img = IMG() markerset = MarkerSet() metadata = img.genomeMetadata() trustedOut = open('./data/trusted_genomes.tsv', 'w') trustedOut.write('Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n') filteredOut = open('./data/filtered_genomes.tsv', 'w') filteredOut.write('Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n') allGenomeIds = set() allTrustedGenomeIds = set() for lineage in ['Archaea', 'Bacteria']: # get all genomes in lineage and build gene count table print '\nBuilding gene count table.' allLineageGenomeIds = img.genomeIdsByTaxonomy(lineage, metadata, 'All') countTable = img.countTable(allLineageGenomeIds) countTable = img.filterTable(allLineageGenomeIds, countTable, 0.9*ubiquityThreshold, 0.9*singleCopyThreshold) # get all genomes from specific lineage allGenomeIds = allGenomeIds.union(allLineageGenomeIds) print 'Lineage ' + lineage + ' contains ' + str(len(allLineageGenomeIds)) + ' genomes.' # tabulate genomes from each phylum allPhylumCounts = {} for genomeId in allLineageGenomeIds: taxon = metadata[genomeId]['taxonomy'][1] allPhylumCounts[taxon] = allPhylumCounts.get(taxon, 0) + 1 # identify marker set for genomes markerGenes = markerset.markerGenes(allLineageGenomeIds, countTable, ubiquityThreshold*len(allLineageGenomeIds), singleCopyThreshold*len(allLineageGenomeIds)) print ' Marker genes: ' + str(len(markerGenes)) geneDistTable = img.geneDistTable(allLineageGenomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable, metadata) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) print ' Marker set size: ' + str(len(colocatedSets)) # identifying trusted genomes (highly complete, low contamination genomes) trustedGenomeIds = set() for genomeId in allLineageGenomeIds: completeness, contamination = markerset.genomeCheck(colocatedSets, genomeId, countTable) if completeness >= trustedCompleteness and contamination <= trustedContamination: trustedGenomeIds.add(genomeId) allTrustedGenomeIds.add(genomeId) trustedOut.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy'])) trustedOut.write('\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6)) trustedOut.write('\t' + str(metadata[genomeId]['scaffold count'])) trustedOut.write('\t' + metadata[genomeId]['biotic relationships']) trustedOut.write('\t' + metadata[genomeId]['status']) trustedOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n') else: filteredOut.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy'])) filteredOut.write('\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6)) filteredOut.write('\t' + str(metadata[genomeId]['scaffold count'])) filteredOut.write('\t' + metadata[genomeId]['biotic relationships']) filteredOut.write('\t' + metadata[genomeId]['status']) filteredOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n') print ' Trusted genomes: ' + str(len(trustedGenomeIds)) # determine status of trusted genomes statusBreakdown = {} for genomeId in trustedGenomeIds: statusBreakdown[metadata[genomeId]['status']] = statusBreakdown.get(metadata[genomeId]['status'], 0) + 1 print ' Trusted genome status breakdown: ' for status, count in statusBreakdown.iteritems(): print ' ' + status + ': ' + str(count) # determine status of retained genomes proposalNameBreakdown = {} for genomeId in trustedGenomeIds: proposalNameBreakdown[metadata[genomeId]['proposal name']] = proposalNameBreakdown.get(metadata[genomeId]['proposal name'], 0) + 1 print ' Retained genome proposal name breakdown: ' for pn, count in proposalNameBreakdown.iteritems(): if 'KMG' in pn or 'GEBA' in pn or 'HMP' in pn: print ' ' + pn + ': ' + str(count) print ' Filtered genomes by phylum:' trustedPhylumCounts = {} for genomeId in trustedGenomeIds: taxon = metadata[genomeId]['taxonomy'][1] trustedPhylumCounts[taxon] = trustedPhylumCounts.get(taxon, 0) + 1 for phylum, count in allPhylumCounts.iteritems(): print phylum + ': %d of %d' % (trustedPhylumCounts.get(phylum, 0), count) trustedOut.close() filteredOut.close() # write out lineage statistics for genome distribution allStats = {} trustedStats = {} for r in xrange(0, 6): # Domain to Genus for genomeId, data in metadata.iteritems(): taxaStr = '; '.join(data['taxonomy'][0:r+1]) allStats[taxaStr] = allStats.get(taxaStr, 0) + 1 if genomeId in allTrustedGenomeIds: trustedStats[taxaStr] = trustedStats.get(taxaStr, 0) + 1 sortedLineages = img.lineagesSorted() fout = open('./data/lineage_stats.tsv', 'w') fout.write('Lineage\tGenomes with metadata\tTrusted genomes\n') for lineage in sortedLineages: fout.write(lineage + '\t' + str(allStats.get(lineage, 0))+ '\t' + str(trustedStats.get(lineage, 0))+ '\n') fout.close()
def run(self, ubiquityThreshold, singleCopyThreshold, trustedCompleteness, trustedContamination, genomeCompleteness, genomeContamination): img = IMG() markerset = MarkerSet() metadata = img.genomeMetadata() trustedOut = open('./data/trusted_genomes.tsv', 'w') trustedOut.write( 'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n' ) filteredOut = open('./data/filtered_genomes.tsv', 'w') filteredOut.write( 'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n' ) allGenomeIds = set() allTrustedGenomeIds = set() for lineage in ['Archaea', 'Bacteria']: # get all genomes in lineage and build gene count table print '\nBuilding gene count table.' allLineageGenomeIds = img.genomeIdsByTaxonomy( lineage, metadata, 'All') countTable = img.countTable(allLineageGenomeIds) countTable = img.filterTable(allLineageGenomeIds, countTable, 0.9 * ubiquityThreshold, 0.9 * singleCopyThreshold) # get all genomes from specific lineage allGenomeIds = allGenomeIds.union(allLineageGenomeIds) print 'Lineage ' + lineage + ' contains ' + str( len(allLineageGenomeIds)) + ' genomes.' # tabulate genomes from each phylum allPhylumCounts = {} for genomeId in allLineageGenomeIds: taxon = metadata[genomeId]['taxonomy'][1] allPhylumCounts[taxon] = allPhylumCounts.get(taxon, 0) + 1 # identify marker set for genomes markerGenes = markerset.markerGenes( allLineageGenomeIds, countTable, ubiquityThreshold * len(allLineageGenomeIds), singleCopyThreshold * len(allLineageGenomeIds)) print ' Marker genes: ' + str(len(markerGenes)) geneDistTable = img.geneDistTable(allLineageGenomeIds, markerGenes, spacingBetweenContigs=1e6) colocatedGenes = markerset.colocatedGenes(geneDistTable, metadata) colocatedSets = markerset.colocatedSets(colocatedGenes, markerGenes) print ' Marker set size: ' + str(len(colocatedSets)) # identifying trusted genomes (highly complete, low contamination genomes) trustedGenomeIds = set() for genomeId in allLineageGenomeIds: completeness, contamination = markerset.genomeCheck( colocatedSets, genomeId, countTable) if completeness >= trustedCompleteness and contamination <= trustedContamination: trustedGenomeIds.add(genomeId) allTrustedGenomeIds.add(genomeId) trustedOut.write(genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy'])) trustedOut.write( '\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6)) trustedOut.write('\t' + str(metadata[genomeId]['scaffold count'])) trustedOut.write( '\t' + metadata[genomeId]['biotic relationships']) trustedOut.write('\t' + metadata[genomeId]['status']) trustedOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n') else: filteredOut.write( genomeId + '\t' + '; '.join(metadata[genomeId]['taxonomy'])) filteredOut.write( '\t%.2f' % (float(metadata[genomeId]['genome size']) / 1e6)) filteredOut.write( '\t' + str(metadata[genomeId]['scaffold count'])) filteredOut.write( '\t' + metadata[genomeId]['biotic relationships']) filteredOut.write('\t' + metadata[genomeId]['status']) filteredOut.write('\t%.3f\t%.3f' % (completeness, contamination) + '\n') print ' Trusted genomes: ' + str(len(trustedGenomeIds)) # determine status of trusted genomes statusBreakdown = {} for genomeId in trustedGenomeIds: statusBreakdown[metadata[genomeId] ['status']] = statusBreakdown.get( metadata[genomeId]['status'], 0) + 1 print ' Trusted genome status breakdown: ' for status, count in statusBreakdown.iteritems(): print ' ' + status + ': ' + str(count) # determine status of retained genomes proposalNameBreakdown = {} for genomeId in trustedGenomeIds: proposalNameBreakdown[metadata[genomeId][ 'proposal name']] = proposalNameBreakdown.get( metadata[genomeId]['proposal name'], 0) + 1 print ' Retained genome proposal name breakdown: ' for pn, count in proposalNameBreakdown.iteritems(): if 'KMG' in pn or 'GEBA' in pn or 'HMP' in pn: print ' ' + pn + ': ' + str(count) print ' Filtered genomes by phylum:' trustedPhylumCounts = {} for genomeId in trustedGenomeIds: taxon = metadata[genomeId]['taxonomy'][1] trustedPhylumCounts[taxon] = trustedPhylumCounts.get(taxon, 0) + 1 for phylum, count in allPhylumCounts.iteritems(): print phylum + ': %d of %d' % (trustedPhylumCounts.get( phylum, 0), count) trustedOut.close() filteredOut.close() # write out lineage statistics for genome distribution allStats = {} trustedStats = {} for r in xrange(0, 6): # Domain to Genus for genomeId, data in metadata.iteritems(): taxaStr = '; '.join(data['taxonomy'][0:r + 1]) allStats[taxaStr] = allStats.get(taxaStr, 0) + 1 if genomeId in allTrustedGenomeIds: trustedStats[taxaStr] = trustedStats.get(taxaStr, 0) + 1 sortedLineages = img.lineagesSorted() fout = open('./data/lineage_stats.tsv', 'w') fout.write('Lineage\tGenomes with metadata\tTrusted genomes\n') for lineage in sortedLineages: fout.write(lineage + '\t' + str(allStats.get(lineage, 0)) + '\t' + str(trustedStats.get(lineage, 0)) + '\n') fout.close()