Example #1
0
def make_group_generator():
    # Note that this Variable is NOT going to show up in `net.parameters()` and
    # therefore it is implicitly free from the ridge penalty/p(theta) prior.
    log_sigma = Variable(torch.log(1e-2 * torch.ones(image_size)),
                         requires_grad=True)
    return NormalNet(mu_net=torch.nn.Linear(group_input_dim, image_size),
                     sigma_net=Lambda(lambda x, log_sigma: torch.exp(
                         log_sigma.expand(x.size(0), -1)) + 1e-3,
                                      extra_args=(log_sigma, )))
Example #2
0
    A = torch.zeros(image_size, image_size)
    A[i, :] = 0.5
    A = torch.Tensor(A)
    data.append(A.view(-1))

temp = torch.stack([data[i] for i in range(len(data))])
X = torch.stack([temp for _ in range(num_samples)])

X += 0.05 * torch.randn(X.size())
X = X.transpose(0, 1)

stddev_multiple = 0.1

inference_net = NormalNet(mu_net=nn.Sequential(nn.Linear(dim_h + dim_h,
                                                         dim_z)),
                          sigma_net=torch.nn.Sequential(
                              nn.Linear(dim_h + dim_h, dim_z),
                              Lambda(torch.exp),
                              Lambda(lambda x: x * stddev_multiple + 1e-3)))


def make_group_generator():
    # Note that this Variable is NOT going to show up in `net.parameters()` and
    # therefore it is implicitly free from the ridge penalty/p(theta) prior.
    log_sigma = Variable(torch.log(1e-2 * torch.ones(image_size)),
                         requires_grad=True)
    return NormalNet(mu_net=torch.nn.Sequential(
        torch.nn.Tanh(), torch.nn.Linear(group_input_dim, image_size)),
                     sigma_net=Lambda(lambda x, log_sigma: torch.exp(
                         log_sigma.expand(x.size(0), -1)) + 1e-3,
                                      extra_args=(log_sigma, )))
Example #3
0
# `inference_net` below. Zero means that the model has no actual connection to
# the output and therefore the standard deviation defaults to the minimum. One
# means that we're learning the real model. This value is flipped to 1 after
# some number of iterations.
stddev_multiple = 0.1

inference_net = NormalNet(
    mu_net=torch.nn.Sequential(
        # inference_net_base,
        torch.nn.Linear(dim_x, dim_z)),

    # Fixed standard deviation
    # sigma_net=Lambda(lambda x: 1e-3 * Variable(torch.ones(x.size(0), dim_z)))

    # Learned constant standard deviation
    # sigma_net=Lambda(
    #   lambda x: torch.exp(inference_net_log_stddev.expand(x.size(0), -1)) + 1e-3
    # )

    # Learned standard deviation as a function of the input
    sigma_net=torch.nn.Sequential(
        # inference_net_base,
        torch.nn.Linear(dim_x, dim_z),
        Lambda(torch.exp),
        Lambda(lambda x: x * stddev_multiple + 1e-3)))


def make_group_generator(group_output_dim):
    # Note that this Variable is NOT going to show up in `net.parameters()` and
    # therefore it is implicitly free from the ridge penalty/p(theta) prior.
    log_sigma = Variable(torch.log(1e-2 * torch.ones(group_output_dim).type(
Example #4
0
  shuffle=True
)

dim_x = metrain.size(2)
num_groups = len(groups)
#group_dims = 196

stddev_multiple = 1

group_dims = [196 for grp in groups]
inference_net = NormalNet(
  mu_net=torch.nn.Sequential(
    # inference_net_base,
    torch.nn.Linear(dim_h + dim_h, dim_z)
  ),
sigma_net=torch.nn.Sequential(
    # inference_net_base,
    torch.nn.Linear(dim_h + dim_h, dim_z),
    Lambda(torch.exp),
    Lambda(lambda x: x * stddev_multiple + 1e-3)
  )
)


def make_group_generator(output_dim):
  # Note that this Variable is NOT going to show up in `net.parameters()` and
  # therefore it is implicitly free from the ridge penalty/p(theta) prior.
  log_sigma = Variable(
    torch.log(1e-2 * torch.ones(output_dim)),
    requires_grad=True
  )
  return NormalNet(