def __init__(self, DocPath=None, text=None): if text is None: self.DocPath = DocPath self.DocText = DocReader.Reader(self.DocPath) tfres = WordCount.get_term_one_list(WordCount.map(self.DocText)) self.DocTermList = tfres self.ParseResume() else: self.DocText = text self.DocTermList = WordCount.get_term_one_list(WordCount.map(self.DocText)) print(self.DocTermList) self.ParseText() self.ParseResume()
def __init__(self, DocPath=None, text=None): if text is None: self.DocPath = DocPath self.DocText = DocReader.Reader(self.DocPath) tfres = WordCount.get_term_one_list(WordCount.map(self.DocText)) self.DocTermList = tfres self.ParseResume() else: self.DocText = text self.DocTermList = WordCount.get_term_one_list( WordCount.map(self.DocText)) print(self.DocTermList) self.ParseText() self.ParseResume()
def getSpecializationUserListByText(self): #сопоставляет специализацию и ЛЮБОЙ ТЕКСТ i = 0 self.specializationIdList = [] specdict = self.ProceedSpecList(self.SpecializationDict) tfrestmp = WordCount.get_term_one_list(WordCount.map(self.tmptext))[0] # langs = self.documents.DocProgLangs self.progLangs = self.documents.DocProgLangs for val in tfrestmp: #self.progLangs |= Document.GetProgLangsFromText(val[0]) res = self.getSpecialization(specdict, val[0]) if res is not None: i += 1 self.specializationIdList.append(res) if i > 100: break self.GetImportantSpecializations(self.specializationIdList)
def user(request, _id): template = loader.get_template('suggesting_system/user.html') FindedUser = User.objects.get(id = _id) t1 = time.time() hhapi = hhAPI(FindedUser) info = hhapi.CreateQuery(GitHubAPI.GetLanguages(FindedUser.gitHub)) textList = [] doctitleList = [] for vac in info: textList.append(vac.description) doctitleList.append(vac.vacancy_Id) # print(vac.description + ' ' + vac.name) allDict = hhapi.docdict i = 0 BIGTextData = '' for i in range(len(textList)): BIGTextData += textList[i] allDict.update(dict(zip([doctitleList[i]], [textList[i]]))) i += 1 # print(allDict) vacancyTerms = WordCount.get_term_one_list(WordCount.map(BIGTextData)) print("vacancy terms = ") print(vacancyTerms[1]) print("hhDATA = ") print(hhapi.documents.DocTermList[1]) print("terms = ") test = dict(list(hhapi.documents.DocTermList[1].items()) + list(vacancyTerms[1].items())) print("test = ") print (test) documentWords, documentTitles, allwords = NMF.ConvertData(allDict, test) print("doc worlds = ") print(documentWords) tmp = NMF.CreateMatrix(allwords, documentWords) # print(tmp[0]) # print(tmp[1]) test = NMF.calculate(tmp[0]) print(documentTitles) WeightMatrix = test[0] HeightMatrix = test[1] topp, pn, res = NMF.prepareToVis(WeightMatrix, HeightMatrix, documentTitles, tmp[1]) print("fin res" + str(res)) finalres = [] a = "ssss" for val in res: try: idVac = int(val[1]) except: idVac = 0 print("idvac = " + str(idVac)) print(val[0]) if idVac != 0 and int(val[0]) > 3: print("appending...") finalres.append(VacancyCache.objects.filter(vacancy_Id=idVac)[0]) info = finalres # print(topp['kinect']) #info = Competition("test", ["course1", "course2"], ["c", "c++"], ["soft1", "soft2", "soft3"], None) #info = Document(FindedUser.resumeField._get_path()) #tmp = EduStandartsParser.printresult() #parm = hhAPI.get_data_from_user_model(FindedUser) t2 = time.time() print("working time = " + str(t2 - t1)) descrs = [] context = RequestContext(request, {'FindedUser': FindedUser, "info": info, "descrs": descrs}) return HttpResponse(template.render(context))
def user(request, _id): template = loader.get_template('suggesting_system/user.html') FindedUser = User.objects.get(id=_id) t1 = time.time() hhapi = hhAPI(FindedUser) info = hhapi.CreateQuery(GitHubAPI.GetLanguages(FindedUser.gitHub)) textList = [] doctitleList = [] for vac in info: textList.append(vac.description) doctitleList.append(vac.vacancy_Id) # print(vac.description + ' ' + vac.name) allDict = hhapi.docdict i = 0 BIGTextData = '' for i in range(len(textList)): BIGTextData += textList[i] allDict.update(dict(zip([doctitleList[i]], [textList[i]]))) i += 1 # print(allDict) vacancyTerms = WordCount.get_term_one_list(WordCount.map(BIGTextData)) print("vacancy terms = ") print(vacancyTerms[1]) print("hhDATA = ") print(hhapi.documents.DocTermList[1]) print("terms = ") test = dict( list(hhapi.documents.DocTermList[1].items()) + list(vacancyTerms[1].items())) print("test = ") print(test) documentWords, documentTitles, allwords = NMF.ConvertData(allDict, test) print("doc worlds = ") print(documentWords) tmp = NMF.CreateMatrix(allwords, documentWords) # print(tmp[0]) # print(tmp[1]) test = NMF.calculate(tmp[0]) print(documentTitles) WeightMatrix = test[0] HeightMatrix = test[1] topp, pn, res = NMF.prepareToVis(WeightMatrix, HeightMatrix, documentTitles, tmp[1]) print("fin res" + str(res)) finalres = [] a = "ssss" for val in res: try: idVac = int(val[1]) except: idVac = 0 print("idvac = " + str(idVac)) print(val[0]) if idVac != 0 and int(val[0]) > 3: print("appending...") finalres.append(VacancyCache.objects.filter(vacancy_Id=idVac)[0]) info = finalres # print(topp['kinect']) #info = Competition("test", ["course1", "course2"], ["c", "c++"], ["soft1", "soft2", "soft3"], None) #info = Document(FindedUser.resumeField._get_path()) #tmp = EduStandartsParser.printresult() #parm = hhAPI.get_data_from_user_model(FindedUser) t2 = time.time() print("working time = " + str(t2 - t1)) descrs = [] context = RequestContext(request, { 'FindedUser': FindedUser, "info": info, "descrs": descrs }) return HttpResponse(template.render(context))