input_file = "test-full.txt"
 output_file = "test-expanded-all-neighb.txt"
 
 # Generate graph from edges file
 G = ex.read_graph(c.output_dir + "edges-directed-6.txt")
 
 # Get feature space and target words
 features_index = u.read_features_file(c.output_dir + "feat-space.txt")
 target_words = u.get_target_words()
 
 # Get sentences/vectors of data to expand
 sentences, data = ex.get_expansion_data(input_file, features_index)
 
 # Get matrix of weight vectors
 print "generating weight matrix..."
 W, b_arr = u.get_weight_matrix(target_words)
 
 
 print "expanding feature vectors..."
 i = 0
 for vect in data:
     #if i == 5:
     #    break
     
     # Store array of current feats
     feats = [f.split(":")[0] for f in sentences[i][1:]]
     
     # Get prediction values for each feature using weight matrix and bias terms
     values = ex.predict_feats(W, b_arr, vect)
     
     # Part 1:
    input_file = "test-full-new.txt"
    output_file = "test-local-path-1.txt"

    # Generate graph from edges file
    G = ex.read_graph(c.output_dir + "edges-directed-6.txt")

    # Get feature space and target words
    features_index = u.read_features_file(c.output_dir + "feat-space.txt")
    target_words = u.get_target_words()

    # Get sentences/vectors of data to expand
    sentences, data = ex.get_expansion_data(input_file, features_index)

    # Get matrix of weight vectors
    print "generating weight matrix..."
    W, b_arr = u.get_weight_matrix(target_words)

    # Iterate over instances and expand them
    print "expanding feature vectors..."
    i = 0
    for vect in data:
        #if i == 3:
        #    break

        # Store array of current feats
        feats = [f.split(":")[0] for f in sentences[i][1:]]

        # Get prediction values for each feature using weight matrix and bias terms
        values = ex.predict_feats(W, b_arr, vect)

        # create dict to hold expanded features
Example #3
0

if __name__ == "__main__":
    # Get feature vectors
    print "generating feature vectors..."
    features_index = u.read_features_file("output-700/feat-space.txt")
    feature_size = len(features_index)
    target_words = u.get_target_words()
    
    # Now let's do SCL
    print "getting targets..."
    targets = u.get_target_words()
    
    # Load target word weight vectors as rows into matrix W
    print "creating W..."
    W, _ = u.get_weight_matrix(targets)
    
    # Perform SVD on W
    print "performing SVD(W)..."
    WT = W.T
    # SVD returns U, S, V.T
    U, S, VT = numpy.linalg.svd(WT, full_matrices=False)
    
    #print "W"
    #print W.shape
    #print "WT"
    #print WT.shape
    #print ""
    
    #print U
    #print "U"