Example #1
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    dict = {
        'bridge': 1,
        'childs': 2,
        'downwarddog': 3,
        'mountain': 4,
        'plank': 5,
        'seatedforwardbend': 6,
        'tree': 7,
        'trianglepose': 8,
        'warrior1': 9,
        'warrior2': 10
    }
    dir_path = '/home/ubuntu/PoseEstimation/VIBE/InputData/input_test_set/'
    output_folder = '/home/ubuntu/PoseEstimation/VIBE/OutputData/test_set/'

    joints3D_csv = open('output_joints3d_dog.csv', 'a')
    pose_csv = open('output_pose.csv_dog', 'a')

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    video_file = '/home/ubuntu/PoseEstimation/VIBE/DogVideo.mp4'
    video_label = dict['bridge']
    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        for i in range(len(output_dict['joints3d'])):
            if (i % 5 == 0):
                flat_arr = output_dict['joints3d'][i].flatten()
                len_N = len(flat_arr)
                np.savetxt(joints3D_csv, [np.append(flat_arr, [video_label])],
                           delimiter=',',
                           fmt=' '.join(['%f'] * len_N + ['%i']))

        for i in range(len(output_dict['pose'])):
            if (i % 5 == 0):
                pose_arr = output_dict['pose'][i].flatten()
                len_M = len(pose_arr)
                np.savetxt(pose_csv, [np.append(pose_arr, [video_label])],
                           delimiter=',',
                           fmt=' '.join(['%f'] * len_M + ['%i']))

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )
Example #2
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    video_file = args.vid_file

    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    output_path = os.path.join(
        args.output_folder,
        os.path.basename(video_file).replace('.mp4', ''))
    os.makedirs(output_path, exist_ok=True)

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        vibe_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )

    print(
        f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".'
    )

    joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))

    if not args.no_render:
        # ========= Render results as a single video ========= #
        renderer = Renderer(resolution=(orig_width, orig_height),
                            orig_img=True,
                            wireframe=args.wireframe)

        output_img_folder = f'{image_folder}_output'
        os.makedirs(output_img_folder, exist_ok=True)

        if args.joints3dview:
            output_img_raw_folder = f'{image_folder}_raw_output'
            os.makedirs(output_img_raw_folder, exist_ok=True)

            output_img_joints3d_folder = f'{image_folder}_joints3d_output'
            os.makedirs(output_img_joints3d_folder, exist_ok=True)

            output_img_mesh_folder = f'{image_folder}_mesh_output'
            os.makedirs(output_img_mesh_folder, exist_ok=True)

            output_img_meshside_folder = f'{image_folder}_meshside_output'
            os.makedirs(output_img_meshside_folder, exist_ok=True)

            output_img_all_folder = f'{image_folder}_all_output'
            os.makedirs(output_img_all_folder, exist_ok=True)

        print(f'Rendering output video, writing frames to {output_img_folder}')

        # prepare results for rendering
        frame_results = prepare_rendering_results(vibe_results, num_frames)
        mesh_color = {
            k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0)
            for k in vibe_results.keys()
        }

        image_file_names = sorted([
            os.path.join(image_folder, x) for x in os.listdir(image_folder)
            if x.endswith('.png') or x.endswith('.jpg')
        ])

        length_image_files = len(image_file_names)
        #length_image_files = 100
        for frame_idx in tqdm(range(length_image_files)):
            img_fname = image_file_names[frame_idx]
            img = cv2.imread(img_fname)

            if args.sideview:
                side_img = np.zeros_like(img)

            if args.joints3dview:
                img_raw = img.copy()
                img_joints3d = np.zeros_like(img)
                joints3d_list = []

            for person_id, person_data in frame_results[frame_idx].items():
                frame_verts = person_data['verts']
                frame_cam = person_data['cam']
                joints3d = person_data['joints3d']
                #print('frame_verts.shape = {}\nframe_cam.shape ={}\njoints3d.shape = {}'.format(
                #   frame_verts.shape, frame_cam.shape, joints3d.shape))
                mc = mesh_color[person_id]

                if args.joints3dview:
                    joints3d_list.append(joints3d)
                #    img_joints3d = render_joints3d(joints3d, img_raw.shape)

                mesh_filename = None

                if args.save_obj:
                    mesh_folder = os.path.join(output_path, 'meshes',
                                               f'{person_id:04d}')
                    os.makedirs(mesh_folder, exist_ok=True)
                    mesh_filename = os.path.join(mesh_folder,
                                                 f'{frame_idx:06d}.obj')

                img = renderer.render(
                    img,
                    frame_verts,
                    cam=frame_cam,
                    color=mc,
                    mesh_filename=mesh_filename,
                )

                if args.sideview:
                    side_img = renderer.render(
                        side_img,
                        frame_verts,
                        cam=frame_cam,
                        color=mc,
                        angle=270,
                        axis=[0, 1, 0],
                    )

            if args.sideview:
                img_mesh = img.copy()
                img = np.concatenate([img, side_img], axis=1)

            cv2.imwrite(
                os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)

            if args.joints3dview:
                #img_joints3d = np.zeros_like(img_raw)
                if len(joints3d_list) == 0:
                    img_joints3d = np.zeros_like(img_raw)
                else:
                    joints3d = np.concatenate(joints3d_list)
                    img_joints3d = render_joints3d(joints3d, img_raw.shape)

            if args.joints3dview:
                img_up = np.concatenate([img_raw, img_joints3d], axis=1)
                img_down = np.concatenate([img_mesh, side_img], axis=1)
                img_all = np.concatenate([img_up, img_down], axis=0)

                cv2.imwrite(
                    os.path.join(output_img_raw_folder,
                                 f'{frame_idx:06d}.png'), img_raw)
                cv2.imwrite(
                    os.path.join(output_img_joints3d_folder,
                                 f'{frame_idx:06d}.png'), img_joints3d)
                cv2.imwrite(
                    os.path.join(output_img_mesh_folder,
                                 f'{frame_idx:06d}.png'), img_mesh)
                cv2.imwrite(
                    os.path.join(output_img_meshside_folder,
                                 f'{frame_idx:06d}.png'), side_img)
                cv2.imwrite(
                    os.path.join(output_img_all_folder,
                                 f'{frame_idx:06d}.png'), img_all)

            if args.display:
                cv2.imshow('Video', img)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        if args.display:
            cv2.destroyAllWindows()

        # ========= Save rendered video ========= #
        vid_name = os.path.basename(video_file)
        save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
        save_name = os.path.join(output_path, save_name)
        print(f'Saving result video to {save_name}')
        images_to_video(img_folder=output_img_folder,
                        output_vid_file=save_name)
        shutil.rmtree(output_img_folder)

        if args.joints3dview:
            '''
            save_name_raw = f'{vid_name.replace(".mp4", "")}_raw.mp4'
            save_name_raw = os.path.join(output_path, save_name_raw)
            images_to_video(img_folder=output_img_raw_folder, output_vid_file=save_name_raw)
            shutil.rmtree(output_img_raw_folder)

            save_name_joints3d = f'{vid_name.replace(".mp4", "")}_joints3d.mp4'
            save_name_joints3d = os.path.join(output_path, save_name_joints3d)
            images_to_video(img_folder=output_img_joints3d_folder, output_vid_file=save_name_joints3d)
            shutil.rmtree(output_img_joints3d_folder)

            save_name_mesh = f'{vid_name.replace(".mp4", "")}_mesh.mp4'
            save_name_mesh = os.path.join(output_path, save_name_mesh)
            images_to_video(img_folder=output_img_mesh_folder, output_vid_file=save_name_mesh)
            shutil.rmtree(output_img_mesh_folder)

            save_name_meshside = f'{vid_name.replace(".mp4", "")}_meshside.mp4'
            save_name_meshside = os.path.join(output_path, save_name_meshside)
            images_to_video(img_folder=output_img_meshside_folder, output_vid_file=save_name_meshside)
            shutil.rmtree(output_img_meshside_folder)
            '''
            save_name_all = f'{vid_name.replace(".mp4", "")}_all.mp4'
            save_name_all = os.path.join(output_path, save_name_all)
            images_to_video(img_folder=output_img_all_folder,
                            output_vid_file=save_name_all)
            shutil.rmtree(output_img_all_folder)

    shutil.rmtree(image_folder)
    print('================= END =================')
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

    map_vals = {
        'bridge': 1,
        'childs': 2,
        'downwarddog': 3,
        'mountain': 4,
        'plank': 5,
        'seatedforwardbend': 6,
        'tree': 7,
        'trianglepose': 8,
        'warrior1': 9,
        'warrior2': 10
    }

    inverse_map = {
        1: 'bridge',
        2: 'childs',
        3: 'downwarddog',
        4: 'mountain',
        5: 'plank',
        6: 'seatedforwardbend',
        7: 'tree',
        8: 'trianglepose',
        9: 'warrior1',
        10: 'warrior2'
    }

    video_file = args.vid_file
    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    dir_path = '/home/ubuntu/PoseEstimation/VIBE/InputData/input_test_set/'
    output_folder = '/home/ubuntu/PoseEstimation/VIBE/OutputData/'

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load Classification Model ========= #
    classification_model = pickle.load(
        open('view_classification_model.pkl', 'rb'))

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    #print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    #print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Run VIBE on each person ========= #
    #print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in list(tracking_results.keys()):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }
        # ========= Extract 3D joint feature for each frame ========= #
        list_val = []
        for i in range(len(output_dict['joints3d'])):
            list_val.append(output_dict['joints3d'][i].flatten().reshape(
                1, -1))

        input_df = pd.DataFrame(np.concatenate(list_val))
        input_df = input_df.round(2)
        predicted_classes = classification_model.predict_classes(input_df)
        output_df = pd.DataFrame(predicted_classes)
        # ========= Printing all possible poses detected for the video ========= #
        total_frames = len(output_df)
        print(
            '\nPrinting probabilities for yoga poses predicted in different frames.'
        )
        for i, v in output_df.value_counts().items():
            val = round((v / total_frames) * 100, 2)
            print('Probability of the yoga pose being ' +
                  inverse_map[i[0]].capitalize() + " is: " + str(val))
        print('\nThe yoga pose in the given video is: ' +
              inverse_map[output_df[0].value_counts().idxmax()].capitalize())