def main():
    env = gym.make('CartPole-v0')

    gen_idx = 0
    nets = [
        model.CartPoleNet(env.observation_space.shape[0], env.action_space.n)
        for _ in range(POPULATION_SIZE)
    ]
    population = [(net, evaluate(env, net)) for net in nets]
    while True:
        population.sort(key=lambda p: p[1], reverse=True)
        rewards = [p[1] for p in population[:PARENTS_COUNT]]
        reward_mean = np.mean(rewards)
        reward_max = np.max(rewards)
        reward_std = np.std(rewards)

        print("%d: reward_mean=%.2f, reward_max=%.2f, reward_std=%.2f" %
              (gen_idx, reward_mean, reward_max, reward_std))
        if reward_mean > 199:
            print("Solved in %d steps" % gen_idx)
            break

        prev_population = population
        population = [population[0]]
        for _ in range(POPULATION_SIZE - 1):
            parent_idx = np.random.randint(0, PARENTS_COUNT)
            parent = prev_population[parent_idx][0]
            net = mutate_parent(parent)
            fitness = utils.evaluate(env, net)
            population.append((net, fitness))
        gen_idx += 1
Example #2
0
def test_evaluate_runs(predictions_file, out_folder):

    df_preds_w_targets = pd.read_csv(predictions_file)
    evaluate(df_preds_w_targets, out_folder=out_folder)
Example #3
0
    for val_w, val_d, val_r, val_t in val_loader:
        net([val_w, val_d, val_r])
        break
    net.initialize(ctx = ctx, init = MyInit(), force_reinit = True)

    # initialize a trainer to train model
    trainer = gluon.Trainer(net.collect_params(), optimizer, {'learning_rate': learning_rate})

    # initialize a SummaryWriter to write information into logs dir
    sw = SummaryWriter(logdir = params_path, flush_secs = 5)

    # compute validation loss before training
    compute_val_loss(net, val_loader, loss_function, sw, 0)

    # compute testing set MAE, RMSE, MAPE before training
    evaluate(net, test_loader, true_value, num_of_vertices, sw, 0)

    # train model
    global_step = 1
    for epoch in range(1, epochs + 1):
        
        for train_w, train_d, train_r, train_t in train_loader:
            
            start_time = time()
            
            with autograd.record():
                output = net([train_w, train_d, train_r])
                l = loss_function(output, train_t)
            l.backward()
            trainer.step(train_t.shape[0])
            training_loss = l.mean().asscalar()
Example #4
0
                recent=24,
                K=3,
                Kt=3)
    net.to(device)  #to cuda

    optimizer = optim.Adam(net.parameters(),
                           lr=learning_rate,
                           weight_decay=wdecay)
    scheduler = optim.lr_scheduler.ExponentialLR(optimizer, decay)
    #scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [20,30], gamma=0.7, last_epoch=-1)

    #calculate origin loss in epoch 0
    compute_val_loss(net, val_loader, loss_function, supports, device, epoch=0)

    # compute testing set MAE, RMSE, MAPE before training
    evaluate(net, test_loader, true_value, supports, device, epoch=0)

    clip = 5
    his_loss = []
    train_time = []
    for epoch in range(1, epochs + 1):
        train_l = []
        start_time_train = time()
        for train_w, train_d, train_r, train_t in train_loader:
            train_w = train_w.to(device)
            train_d = train_d.to(device)
            train_r = train_r.to(device)
            train_t = train_t.to(device)
            net.train()  #train pattern
            optimizer.zero_grad()  #grad to 0
Example #5
0
    # initialize a trainer to train model
    trainer = gluon.Trainer(net.collect_params(), optimizer,
                            {'learning_rate': learning_rate})

    # initialize a SummaryWriter to write information into logs dir
    sw = SummaryWriter(logdir=params_path, flush_secs=5)

    # compute validation loss before training
    compute_val_loss(net, val_loader, loss_function, sw, epoch=0, ctx=ctx)

    # compute testing set MAE, RMSE, MAPE before training
    evaluate(net,
             test_loader,
             true_value,
             num_of_vertices,
             sw,
             epoch=0,
             ctx=ctx)

    # train model
    global_step = 1
    for epoch in range(1, epochs + 1):
        for train_w, train_d, train_r, train_t in train_loader:
            # running on single gpu
            train_w = train_w.as_in_context(ctx)
            train_d = train_d.as_in_context(ctx)
            train_r = train_r.as_in_context(ctx)
            train_t = train_t.as_in_context(ctx)

            with autograd.record():
Example #6
0
                                        time: {batch_end_time - batch_start_time:.2f}'
                )
                print(
                    f's:[{epoch:d}, {i + 1:5d}] loss: {running_loss_s / group_num:.2f}, \
                                        time: {batch_end_time - batch_start_time:.2f}'
                )
                print(
                    '--------------------------------------------------------------------'
                )
                running_loss = 0.0
                running_loss_f = 0.0
                running_loss_o = 0.0
                running_loss_s = 0.0
                batch_start_time = batch_end_time

        epoch_end_time = time.perf_counter()
        print(f'Epoch cost {epoch_end_time - epoch_start_time:.2f} seconds')

        # probably not need to run this after every epoch:可能不需要在每一个时代之后都运行这个
        with torch.no_grad():
            # compute validation loss:计算验证损失
            compute_val_loss(net, val_loader, loss_function, None, epoch,
                             device, all_data['stats']['stats'])

            # testing:测试
            evaluate(net, test_loader, true_value, num_of_vertices, None,
                     epoch, device, all_data['stats']['stats'])

    end_time = time.perf_counter()
    print(f'Total running time is {end_time - start_time:.2f} seconds.')
Example #7
0
            train_t = train_t.to(device)

            outputs = net([train_w, train_d, train_r])

            loss = loss_function(outputs, train_t)  # loss is a tensor on the same device as outpus and train_t
            loss.backward()
            optimizer.step()

            running_loss += loss.item()  # type of running_loss is float, loss.item() is a float on CPU

            if i % group_num == group_num - 1:
                batch_end_time = time.perf_counter()
                print(f'[{epoch:d}, {i + 1:5d}] loss: {running_loss / group_num:.2f}, \
                        time: {batch_end_time - batch_start_time:.2f}')
                running_loss = 0.0
                batch_start_time = batch_end_time

        epoch_end_time = time.perf_counter()
        print(f'Epoch cost {epoch_end_time - epoch_start_time:.2f} seconds')

        # probably not need to run this after every epoch
        with torch.no_grad():
            # compute validation loss
            compute_val_loss(net, val_loader, loss_function, None, epoch, device)

        # testing
            evaluate(net, test_loader, true_value, num_of_vertices, None, epoch, device)

    end_time = time.perf_counter()
    print(f'Total running time is {end_time - start_time:.2f} seconds.')
          torch.cuda.get_device_name(0))
    model = model.cuda()  # move model to GPU if available
else:
    print('[STATUS] Nvidia GPU not found, training using CPU')

criterion = nn.CrossEntropyLoss()  # criterion
optimizer = torch.optim.Adam(
    model.parameters(), lr=float(args['learning_rate'])
)  # model optimizer (see torch.optim documentation to explore other optimizers)

print('[INFO] Training and evaluating the model...')

# train and evaluate the model
if args['file_name'] is None:
    print(
        '[WARNING] Trained model will not be saved, no path specified. Use -f or --file_name args to save the trained model'
    )
else:
    print('[INFO] Trained model will be saved as:', args['file_name'])

final_model, training_losses = train(int(args['epochs']),
                                     model,
                                     train_loader,
                                     criterion,
                                     optimizer,
                                     use_cuda,
                                     save_path=args['file_name'])
evaluate(model, test_loader, criterion, use_cuda)

print('[STATUS] Model training and evaluation completed')
print('Job completed!')
def main():
    cudnn.benchmark = True
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    assert config.MISC.TEST_INTERVAL is not 0, 'Illegal setting: config.MISC.TEST_INTERVAL = 0!'

    # set random seed
    if config.MISC.RANDOM_SEED:
        random.seed(config.MISC.RANDOM_SEED)
        np.random.seed(config.MISC.RANDOM_SEED)
        torch.manual_seed(config.MISC.RANDOM_SEED)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(config.MISC.RANDOM_SEED)

    train_transformer = Mytransforms.Compose([
        Mytransforms.KeyAreaCrop(20),
        Mytransforms.RandomRotate(40),
        Mytransforms.TestResized(config.MODEL.IMG_SIZE),
        Mytransforms.RandomHorizontalFlip()
    ])

    test_transformer = Mytransforms.Compose([
        Mytransforms.KeyAreaCrop(20),
        Mytransforms.TestResized(config.MODEL.IMG_SIZE)
    ])

    # train
    source_dset = HandKptDataset(config.DATA.SOURCE.TRAIN.DIR, config.DATA.SOURCE.TRAIN.LBL_FILE,
                                 stride=config.MODEL.HEATMAP_STRIDE, transformer=train_transformer)

    # target_dset = HandKptDataset(config.DATA.TARGET.TRAIN.DIR, config.DATA.TARGET.TRAIN.LBL_FILE,
    #                              stride=config.MODEL.HEATMAP_STRIDE, transformer=train_transformer)

    source_val_dset = HandKptDataset(config.DATA.SOURCE.VAL.DIR, config.DATA.SOURCE.VAL.LBL_FILE,
                                     stride=config.MODEL.HEATMAP_STRIDE, transformer=test_transformer)
    target_val_dset = HandKptDataset(config.DATA.TARGET.VAL.DIR, config.DATA.TARGET.VAL.LBL_FILE,
                                     stride=config.MODEL.HEATMAP_STRIDE, transformer=test_transformer)

    # source only
    train_loader = torch.utils.data.DataLoader(
        source_dset,
        batch_size=config.TRAIN.BATCH_SIZE, shuffle=True,
        num_workers=config.MISC.WORKERS, pin_memory=True)

    # val
    source_val_loader = torch.utils.data.DataLoader(
        source_val_dset,
        batch_size=config.TRAIN.BATCH_SIZE, shuffle=False,
        num_workers=config.MISC.WORKERS, pin_memory=True)
    target_val_loader = torch.utils.data.DataLoader(
        target_val_dset,
        batch_size=config.TRAIN.BATCH_SIZE, shuffle=False,
        num_workers=config.MISC.WORKERS, pin_memory=True)

    logger = Logger(ckpt_path=os.path.join(config.DATA.CKPT_PATH, config.PROJ_NAME),
                    tsbd_path=os.path.join(config.DATA.VIZ_PATH, config.PROJ_NAME))

    net = pose_resnet.get_pose_net(config).to(device)
    optimizer = torch.optim.Adam(net.parameters(), config.TRAIN.BASE_LR,
                                 weight_decay=config.TRAIN.WEIGHT_DECAY)

    input_shape = (config.TRAIN.BATCH_SIZE, 3, config.MODEL.IMG_SIZE, config.MODEL.IMG_SIZE)
    logger.add_graph(net, input_shape, device)

    if len(config.MODEL.RESUME) > 0:
        print("=> loading checkpoint '{}'".format(config.MODEL.RESUME))
        resume_ckpt = torch.load(config.MODEL.RESUME)
        net.load_state_dict(resume_ckpt['net'])
        optimizer.load_state_dict(resume_ckpt['optim'])
        config.TRAIN.START_ITERS = resume_ckpt['iter']
        logger.global_step = resume_ckpt['iter']
        logger.best_metric_val = resume_ckpt['best_metric_val']
    net = torch.nn.DataParallel(net)

    if config.EVALUATE:
        pck05, pck2 = evaluate(net, target_val_loader, img_size=config.MODEL.IMG_SIZE, vis=True,
                       logger=logger, disp_interval=config.MISC.DISP_INTERVAL)
        print("=> validate [email protected] = {}, [email protected] = {}".format(pck05 * 100, pck2 * 100))
        return

    criterion = nn.SmoothL1Loss(reduction='none').to(device)

    total_progress_bar = tqdm.tqdm(desc='Train iter', ncols=80,
                                   total=config.TRAIN.MAX_ITER,
                                   initial=config.TRAIN.START_ITERS)
    epoch = 0

    while logger.global_step < config.TRAIN.MAX_ITER:
        for (stu_inputs, stu_heatmap, _) in tqdm.tqdm(
                train_loader, total=len(train_loader),
                desc='Current epoch', ncols=80, leave=False):

            stu_inputs = stu_inputs.to(device)
            stu_heatmap = stu_heatmap.to(device)

            stu_heats = net(stu_inputs)

            loss = criterion(stu_heats, stu_heatmap).sum() / stu_inputs.size(0)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # val
            if logger.global_step % config.MISC.TEST_INTERVAL == 0:
                pck05, pck2 = evaluate(net, source_val_loader, img_size=config.MODEL.IMG_SIZE, vis=True,
                                       logger=logger, disp_interval=config.MISC.DISP_INTERVAL,
                                       show_gt=(logger.global_step == 0), is_target=False)
                logger.add_scalar('[email protected]', pck05 * 100)
                logger.add_scalar('[email protected]', pck2 * 100)

                pck05, pck2 = evaluate(net, target_val_loader, img_size=config.MODEL.IMG_SIZE, vis=True,
                                       logger=logger, disp_interval=config.MISC.DISP_INTERVAL,
                                       show_gt=(logger.global_step == 0), is_target=True)
                logger.add_scalar('[email protected]', pck05 * 100)
                logger.add_scalar('[email protected]', pck2 * 100)

                logger.save_ckpt(state={
                    'net': net.module.state_dict(),
                    'optim': optimizer.state_dict(),
                    'iter': logger.global_step,
                    'best_metric_val': logger.best_metric_val,
                }, cur_metric_val=pck05)

            logger.step(1)
            total_progress_bar.update(1)

            # log
            logger.add_scalar('regress_loss', loss.item())

        epoch += 1

    total_progress_bar.close()