def main():
    parser = argparse.ArgumentParser(description="ReID Baseline Training")
    parser.add_argument("--config_file",
                        default="",
                        help="path to config file",
                        type=str)
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER)

    args = parser.parse_args()
    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger = setup_logger("reid_baseline", output_dir, 0)
    logger.info(args)
    if args.config_file != "":
        logger.info("Loaded configuration file {}".format(args.config_file))

    logger.info("Running with config:\n{}".format(cfg))

    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
    cudnn.benchmark = True

    feats, dataset = inference(cfg, logger)
    distmat = compute_jaccard_distance(feats)
    DBSCAN_cluster(distmat, dataset, output_dir)
Example #2
0
def train_net():
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    # tb_writer = tf.summary.FileWriter(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    # model & loss
    # estimator = PointCloudAE(opt.emb_dim, opt.num_point)
    # estimator.cuda()
    criterion = ChamferLoss()
    # if opt.resume_model != '':
    #     estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    # train: 1102, val: 206
    # train_dataset = ShapeDataset(opt.h5_file, mode='train', augment=True)
    # train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size,
    #                                                shuffle=True, num_workers=opt.num_workers)
    val_dataset = ShapeDataset(opt.h5_file, mode='val', augment=False)
    val_dataloader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.num_workers)

    val_loss = 0.0
    cd_num = torch.zeros(6)
    cd = torch.zeros(6)
    for i, data in enumerate(val_dataloader, 1):
        batch_xyz, batch_label = data
        idx = batch_label.item()
        batch_xyz = batch_xyz[:, :, :3].cuda()
        prior = torch.from_numpy(mean_shapes[idx]).cuda().float().unsqueeze(0)
        loss, _, _ = criterion(prior, batch_xyz)
        cd_num[idx] += 1
        cd[idx] += loss.item()

    # zero divider
    cd_metric = (cd / cd_num) * 1000
    print(
        "{:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f}".format(
            cd_metric[0], cd_metric[1], cd_metric[2], cd_metric[3],
            cd_metric[4], cd_metric[5], torch.mean(cd_metric)))
Example #3
0
def main():
    parser = argparse.ArgumentParser(description="ReID Baseline Training")
    parser.add_argument("--local_rank", default=0, type=int)
    parser.add_argument("--config_file",
                        default="",
                        help="path to config file",
                        type=str)
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER)
    args = parser.parse_args()

    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger = setup_logger("reid_baseline", output_dir, 0)
    logger.info(args)
    if args.config_file != "":
        logger.info("Loaded configuration file {}".format(args.config_file))

    logger.info("Running with config:\n{}".format(cfg))
    cudnn.benchmark = True

    distributed = int(
        os.environ['WORLD_SIZE']) > 1 if 'WORLD_SIZE' in os.environ else False
    if distributed:
        gpu = args.local_rank
        torch.cuda.set_device(gpu)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID

    naive_train(cfg, logger, distributed, args.local_rank)
def main():
    parser = argparse.ArgumentParser(description="ReID Baseline Training")
    parser.add_argument("--config_file",
                        default="",
                        help="path to config file",
                        type=str)
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER)

    args = parser.parse_args()
    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger = setup_logger("reid_baseline", output_dir, 0)
    logger.info(args)
    if args.config_file != "":
        logger.info("Loaded configuration file {}".format(args.config_file))

    logger.info("Running with config:\n{}".format(cfg))

    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
    cudnn.benchmark = True

    batch, num_query = inference(cfg, logger)
    cmc, mAP, indices_np = post_processor(cfg, batch, num_query)

    logger.info('Validation Results')
    logger.info("mAP: {:.1%}".format(mAP))
    for r in [1, 5, 10]:
        logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1]))
Example #5
0
def train_net():
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.FileWriter(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    # model & loss
    estimator = PointCloudAE(opt.emb_dim, opt.num_point)
    estimator.cuda()
    criterion = ChamferLoss()
    if opt.resume_model != '':
        estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    train_dataset = ShapeDataset(opt.h5_file, mode='train', augment=True)
    train_dataloader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=opt.batch_size,
                                                   shuffle=True,
                                                   num_workers=opt.num_workers)
    val_dataset = ShapeDataset(opt.h5_file, mode='val', augment=False)
    val_dataloader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=opt.batch_size,
                                                 shuffle=False,
                                                 num_workers=opt.num_workers)
    # train
    st_time = time.time()
    global_step = ((train_dataset.length + opt.batch_size - 1) //
                   opt.batch_size) * opt.repeat_epoch * (opt.start_epoch - 1)
    decay_count = -1
    for epoch in range(opt.start_epoch, opt.max_epoch + 1):
        # train one epoch
        logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
                    ', ' + 'Epoch %02d' % epoch + ', ' + 'Training started'))
        # create optimizer and adjust learning rate if needed
        if global_step // opt.decay_step > decay_count:
            decay_count += 1
            if decay_count < len(opt.decay_rate):
                current_lr = opt.lr * opt.decay_rate[decay_count]
                optimizer = torch.optim.Adam(estimator.parameters(),
                                             lr=current_lr)
        batch_idx = 0
        estimator.train()
        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(train_dataloader):
                # label must be zero_indexed
                batch_xyz, batch_label = data
                batch_xyz = batch_xyz[:, :, :3].cuda()
                optimizer.zero_grad()
                embedding, point_cloud = estimator(batch_xyz)
                loss, _, _ = criterion(point_cloud, batch_xyz)
                summary = tf.Summary(value=[
                    tf.Summary.Value(tag='learning_rate',
                                     simple_value=current_lr),
                    tf.Summary.Value(tag='train_loss', simple_value=loss)
                ])
                # backward
                loss.backward()
                optimizer.step()
                global_step += 1
                batch_idx += 1
                # write results to tensorboard
                tb_writer.add_summary(summary, global_step)
                if batch_idx % 10 == 0:
                    logger.info('Batch {0} Loss:{1:f}'.format(batch_idx, loss))
        logger.info(
            '>>>>>>>>----------Epoch {:02d} train finish---------<<<<<<<<'.
            format(epoch))
        # evaluate one epoch
        logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
                    ', ' + 'Epoch %02d' % epoch + ', ' + 'Testing started'))
        estimator.eval()
        val_loss = 0.0
        for i, data in enumerate(val_dataloader, 1):
            batch_xyz, batch_label = data
            batch_xyz = batch_xyz[:, :, :3].cuda()
            embedding, point_cloud = estimator(batch_xyz)
            loss, _, _ = criterion(point_cloud, batch_xyz)
            val_loss += loss.item()
            logger.info('Batch {0} Loss:{1:f}'.format(i, loss))
        val_loss = val_loss / i
        summary = tf.Summary(
            value=[tf.Summary.Value(tag='val_loss', simple_value=val_loss)])
        tb_writer.add_summary(summary, global_step)
        logger.info('Epoch {0:02d} test average loss: {1:06f}'.format(
            epoch, val_loss))
        logger.info(
            '>>>>>>>>----------Epoch {:02d} test finish---------<<<<<<<<'.
            format(epoch))
        # save model after each epoch
        torch.save(estimator.state_dict(),
                   '{0}/model_{1:02d}.pth'.format(opt.result_dir, epoch))
def train_net():
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        for k in range(len(physical_devices)):
            tf.config.experimental.set_memory_growth(physical_devices[k], True)
            print(
                'memory growth:',
                tf.config.experimental.get_memory_growth(physical_devices[k]))
    else:
        print("Not enough GPU hardware devices available")
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.create_file_writer(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    logger.propagate = 0
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    # model & loss
    estimator = DeformNet(opt.n_cat, opt.nv_prior)
    estimator.cuda()
    criterion = Loss(opt.corr_wt, opt.cd_wt, opt.entropy_wt, opt.deform_wt)
    if opt.resume_model != '':
        estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    train_dataset = PoseDataset(opt.dataset,
                                'train',
                                opt.data_dir,
                                opt.n_pts,
                                opt.img_size,
                                opt.points_process,
                                vis=visflag)
    val_dataset = PoseDataset(opt.dataset,
                              'test',
                              opt.data_dir,
                              opt.n_pts,
                              opt.img_size,
                              opt.points_process,
                              vis=visflag)
    # start training
    st_time = time.time()
    train_steps = 1500
    global_step = train_steps * (opt.start_epoch - 1)
    n_decays = len(opt.decay_epoch)
    assert len(opt.decay_rate) == n_decays
    for i in range(n_decays):
        if opt.start_epoch > opt.decay_epoch[i]:
            decay_count = i
    current_lr = opt.lr * opt.decay_rate[decay_count]
    optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
    train_size = train_steps * opt.batch_size
    indices = []
    page_start = -train_size
    for epoch in range(opt.start_epoch, opt.max_epoch + 1):
        # train one epoch
        logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
                    ', ' + 'Epoch %02d' % epoch + ', ' + 'Training started'))
        # # create optimizer and adjust learning rate if needed
        # if decay_count < len(opt.decay_rate):
        #     if epoch > opt.decay_epoch[decay_count]:
        #         current_lr = opt.lr * opt.decay_rate[decay_count]
        #         optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
        #         decay_count += 1
        # sample train subset
        page_start += train_size
        len_last = len(indices) - page_start
        if len_last < train_size:
            indices = indices[page_start:]
            if opt.dataset == 'CAMERA+Real':
                # CAMERA : Real = 3 : 1
                camera_len = train_dataset.subset_len[0]
                real_len = train_dataset.subset_len[1]
                real_indices = list(range(camera_len, camera_len + real_len))
                camera_indices = list(range(camera_len))
                n_repeat = (train_size - len_last) // (4 * real_len) + 1
                data_list = random.sample(camera_indices, 3 * n_repeat *
                                          real_len) + real_indices * n_repeat
                random.shuffle(data_list)
                indices += data_list
            else:
                data_list = list(range(train_dataset.length))
                for i in range((train_size - len_last) //
                               train_dataset.length + 1):
                    random.shuffle(data_list)
                    indices += data_list
            page_start = 0
        train_idx = indices[page_start:(page_start + train_size)]
        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_idx)
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=opt.batch_size,
            sampler=train_sampler,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.train()
        for i, data in enumerate(train_dataloader, 1):
            points, points_pro, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points_pro = points_pro.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points_pro, rgb, choose, cat_id,
                                           prior)
            loss, corr_loss, cd_loss, entropy_loss, deform_loss = criterion(
                assign_mat, deltas, prior, nocs, model)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            global_step += 1
            # write results to tensorboard
            with tb_writer.as_default():
                tf.summary.scalar('learning_rate',
                                  current_lr,
                                  step=global_step)
                tf.summary.scalar('train_loss', loss.item(), step=global_step)
                tf.summary.scalar('corr_loss',
                                  corr_loss.item(),
                                  step=global_step)
                tf.summary.scalar('cd_loss', cd_loss.item(), step=global_step)
                tf.summary.scalar('entropy_loss',
                                  entropy_loss.item(),
                                  step=global_step)
                tf.summary.scalar('deform_loss',
                                  deform_loss.item(),
                                  step=global_step)
                tb_writer.flush()

            if i % 10 == 0:
                logger.info(
                    'Batch {0} Loss:{1:f}, corr_loss:{2:f}, cd_loss:{3:f}, entropy_loss:{4:f}, deform_loss:{5:f}'
                    .format(i, loss.item(), corr_loss.item(), cd_loss.item(),
                            entropy_loss.item(), deform_loss.item()))
        # adjust learning rate if needed
        if decay_count < len(opt.decay_rate):
            if epoch >= opt.decay_epoch[decay_count]:
                current_lr = opt.lr * opt.decay_rate[decay_count]
                optimizer = torch.optim.Adam(estimator.parameters(),
                                             lr=current_lr)
                decay_count += 1

        logger.info(
            '>>>>>>>>----------Epoch {:02d} train finish---------<<<<<<<<'.
            format(epoch))

        # evaluate one epoch
        logger.info('Time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Epoch %02d' % epoch + ', ' + 'Testing started'))
        val_loss = 0.0
        total_count = np.zeros((opt.n_cat, ), dtype=int)
        strict_success = np.zeros((opt.n_cat, ),
                                  dtype=int)  # 5 degree and 5 cm
        easy_success = np.zeros((opt.n_cat, ), dtype=int)  # 10 degree and 5 cm
        iou_success = np.zeros((opt.n_cat, ),
                               dtype=int)  # relative scale error < 0.1
        # sample validation subset
        # opt.val_size = 2500
        val_idx = random.sample(list(range(val_dataset.length)), opt.val_size)
        val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_idx)
        val_dataloader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=1,
            sampler=val_sampler,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.eval()
        for i, data in enumerate(val_dataloader, 1):
            points, points_pro, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points_pro = points_pro.cuda()
            points = points.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points_pro, rgb, choose, cat_id,
                                           prior)
            loss, _, _, _, _ = criterion(assign_mat, deltas, prior, nocs,
                                         model)
            # estimate pose and scale
            inst_shape = prior + deltas
            assign_mat = F.softmax(assign_mat, dim=2)
            nocs_coords = torch.bmm(assign_mat, inst_shape)
            nocs_coords = nocs_coords.detach().cpu().numpy()[0]
            points = points.cpu().numpy()[0]
            # use choose to remove repeated points
            choose = choose.cpu().numpy()[0]
            _, choose = np.unique(choose, return_index=True)
            nocs_coords = nocs_coords[choose, :]
            points = points[choose, :]
            _, _, _, pred_sRT = estimateSimilarityTransform(
                nocs_coords, points)
            # evaluate pose
            cat_id = cat_id.item()
            if pred_sRT is not None:
                sRT = sRT.detach().cpu().numpy()[0]
                R_error, T_error, IoU = compute_sRT_errors(pred_sRT, sRT)
                if R_error < 5 and T_error < 0.05:
                    strict_success[cat_id] += 1
                if R_error < 10 and T_error < 0.05:
                    easy_success[cat_id] += 1
                if IoU < 0.1:
                    iou_success[cat_id] += 1
            total_count[cat_id] += 1
            val_loss += loss.item()
            if i % 100 == 0:
                logger.info('Batch {0} Loss:{1:f}'.format(i, loss.item()))
        # compute accuracy
        strict_acc = 100 * (strict_success / total_count)
        easy_acc = 100 * (easy_success / total_count)
        iou_acc = 100 * (iou_success / total_count)
        for i in range(opt.n_cat):
            logger.info('{} accuracies:'.format(val_dataset.cat_names[i]))
            logger.info('5^o 5cm: {:4f}'.format(strict_acc[i]))
            logger.info('10^o 5cm: {:4f}'.format(easy_acc[i]))
            logger.info('IoU < 0.1: {:4f}'.format(iou_acc[i]))
        strict_acc = np.mean(strict_acc)
        easy_acc = np.mean(easy_acc)
        iou_acc = np.mean(iou_acc)
        val_loss = val_loss / opt.val_size
        with tb_writer.as_default():
            tf.summary.scalar('val_loss', val_loss, step=global_step)
            tf.summary.scalar('5^o5cm_acc', strict_acc, step=global_step)
            tf.summary.scalar('10^o5cm_acc', easy_acc, step=global_step)
            tf.summary.scalar('iou_acc', iou_acc, step=global_step)
            tb_writer.flush()
        logger.info('Epoch {0:02d} test average loss: {1:06f}'.format(
            epoch, val_loss))
        logger.info('Overall accuracies:')
        logger.info('5^o 5cm: {:4f} 10^o 5cm: {:4f} IoU: {:4f}'.format(
            strict_acc, easy_acc, iou_acc))
        logger.info(
            '>>>>>>>>----------Epoch {:02d} test finish---------<<<<<<<<'.
            format(epoch))
        # save model after each epoch
        torch.save(estimator.state_dict(),
                   '{0}/model_{1:02d}.pth'.format(opt.result_dir, epoch))
Example #7
0
        batch_time.update(time.time() - end)
        end = time.time()

        if i % 25 == 0:
            logger.info('Validate: [{0}/{1}]\t'
                        'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                        'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                            i,
                            len(val_loader),
                            batch_time=batch_time,
                            loss=losses))

    logger.info('Finished validation')
    return losses.avg


if __name__ == '__main__':

    opt = parse_options()

    torch.cuda.set_device(opt.local_rank)
    torch.distributed.init_process_group(backend='nccl', init_method='env://')
    cudnn.benchmark = True

    logger = setup_logger(output=opt.save_model,
                          distributed_rank=dist.get_rank(),
                          name='vos')

    main(opt)
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)
    # device_ids = [0,1]
    cudnn.benchmark = True
    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)

    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    # refiner.cuda()
    # estimator = nn.DataParallel(estimator, device_ids=device_ids)

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
        print('LOADED!!')

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        print('no refinement')
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        # optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, False,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
        # print(dataset.list)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    # print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    # criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf
    best_epoch = 0

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    count_gen = 0

    mode = 1

    if mode == 1:

        for epoch in range(opt.start_epoch, opt.nepoch):
            logger = setup_logger(
                'epoch%d' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
            logger.info('Train time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Training started'))
            train_count = 0
            train_dis_avg = 0.0
            if opt.refine_start:
                estimator.eval()
                refiner.train()
            else:
                estimator.train()
            optimizer.zero_grad()

            for rep in range(opt.repeat_epoch):
                for i, data in enumerate(dataloader, 0):
                    points, choose, img, target_sym, target_cen, idx, file_list_idx = data

                    if idx is 9 or idx is 16:
                        continue

                    points, choose, img, target_sym, target_cen, idx = Variable(points).cuda(), \
                                                                     Variable(choose).cuda(), \
                                                                     Variable(img).cuda(), \
                                                                     Variable(target_sym).cuda(), \
                                                                     Variable(target_cen).cuda(), \
                                                                     Variable(idx).cuda()

                    pred_norm, pred_on_plane, emb = estimator(
                        img, points, choose, idx)

                    loss = criterion(pred_norm, pred_on_plane, target_sym,
                                     target_cen, idx, points, opt.w,
                                     opt.refine_start)

                    # scene_idx = dataset.list[file_list_idx]

                    loss.backward()

                    # train_dis_avg += dis.item()
                    train_count += 1

                    if train_count % opt.batch_size == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3}'.
                            format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size),
                                train_count))
                        optimizer.step()
                        # for param_lr in optimizer.module.param_groups:
                        #         param_lr['lr'] /= 2
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count % 8 == 0:
                        print(pred_on_plane.max())
                        print(pred_on_plane.mean())
                        print(idx)

                    if train_count != 0 and train_count % 1000 == 0:
                        if opt.refine_start:
                            torch.save(
                                refiner.state_dict(),
                                '{0}/pose_refine_model_current.pth'.format(
                                    opt.outf))
                        else:
                            torch.save(
                                estimator.state_dict(),
                                '{0}/pose_model_current.pth'.format(opt.outf))

            print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.
                  format(epoch))

            logger = setup_logger(
                'epoch%d_test' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
            logger.info('Test time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Testing started'))
            test_loss = 0.0
            test_count = 0
            estimator.eval()

            logger.info(
                'Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), epoch,
                    test_loss))
            print(pred_on_plane.max())
            print(pred_on_plane.mean())
            bs, num_p, _ = pred_on_plane.size()
            # if epoch % 40 == 0:
            #     import pdb;pdb.set_trace()
            best_test = test_loss
            best_epoch = epoch
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

            if best_test < opt.decay_margin and not opt.decay_start:
                opt.decay_start = True
                opt.lr *= opt.lr_rate
                # opt.w *= opt.w_rate
                optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        estimator.load_state_dict(
            torch.load('{0}/pose_model_{1}_{2}.pth'.format(
                opt.outf, best_epoch, best_test)))
    else:
        estimator.load_state_dict(
            torch.load('{0}/pose_model_45_0.0.pth'.format(opt.outf),
                       map_location='cpu'))
Example #9
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_global_duel_bing'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_global_duel_bing'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training
    estimator = PoseNetBinghamDuel(num_points=opt.num_points,
                                   num_obj=opt.num_objects)
    estimator.cuda()

    train_writer = SummaryWriter(comment='duel_binham_train')
    valid_writer = SummaryWriter(comment='duel_binham_valid')

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.QUATERNION,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(opt.dataset_root,
                         mode='train_syn_grid_valid',
                         object_list=object_list,
                         output_data=output_format,
                         resample_on_error=True,
                         preprocessors=[
                             YCBOcclusionAugmentor(opt.dataset_root),
                             ColorJitter(),
                             InplaneRotator()
                         ],
                         postprocessors=[ImageNormalizer(),
                                         PointShifter()],
                         image_size=[640, 480],
                         num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)

    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = DuelLoss(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    cum_batch_count = 0
    mean_z = 0
    mean_err = 0
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, idx = data
                idx = idx - 1
                points, choose, img, target, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(idx).cuda()
                pred_q1, pred_q2, pred_z, _ = estimator(
                    img, points, choose, idx)
                loss, dis = criterion(pred_q1.view(-1), pred_q2.view(-1),
                                      torch.abs(pred_z.view(-1)), target)
                loss.backward()
                mean_z += torch.sum(torch.abs(pred_z.view(-1).detach()))
                pred_q = makeBinghamM(
                    pred_q1.view(-1).detach(),
                    pred_q2.view(-1).detach())[:, 0]
                pred_q = pred_q / pred_q.norm()
                mean_err += tensorAngularDiff(pred_q, target) * 180 / np.pi

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    cum_batch_count += 1
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count / len(dataset),
                            train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    if (cum_batch_count % 100 == 0):
                        train_writer.add_scalar('loss', loss, cum_batch_count)
                        train_writer.add_scalar('lik', dis, cum_batch_count)
                        train_writer.add_scalar('mean_lik',
                                                train_dis_avg / opt.batch_size,
                                                cum_batch_count)
                        train_writer.add_scalar(
                            'mean_z', mean_z / (100 * opt.batch_size),
                            cum_batch_count)
                        train_writer.add_scalar(
                            'mean_err', mean_err / (100 * opt.batch_size),
                            cum_batch_count)
                        mean_sig = 0
                        mean_err = 0
                    train_dis_avg = 0
                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(),
                               '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        mean_z = 0
        mean_err = 0
        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, idx = data
            idx = idx - 1
            points, choose, img, target, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(idx).cuda()
            pred_q1, pred_q2, pred_z, _ = estimator(img, points, choose, idx)
            loss, dis = criterion(pred_q1.view(-1), pred_q2.view(-1),
                                  torch.abs(pred_z.view(-1)), target)
            mean_z += torch.sum(torch.abs(pred_z.view(-1).detach()))
            pred_q = makeBinghamM(
                pred_q1.view(-1).detach(),
                pred_q2.view(-1).detach())[:, 0]
            pred_q = pred_q / pred_q.norm()
            mean_err += tensorAngularDiff(pred_q, target) * 180 / np.pi

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))
            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        valid_writer.add_scalar('loss', loss, cum_batch_count)
        valid_writer.add_scalar('lik', dis, cum_batch_count)
        valid_writer.add_scalar('mean_lik', test_dis, cum_batch_count)
        valid_writer.add_scalar('mean_z', mean_z / test_count, cum_batch_count)
        valid_writer.add_scalar('mean_err', mean_err / test_count,
                                cum_batch_count)
        mean_sig = 0
        mean_err = 0
        if test_dis <= best_test:
            best_test = test_dis
            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21 #number of object classes in the dataset
    opt.num_points = 1000 #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_global_mnorm' #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_global_mnorm' #folder to save logs
    opt.repeat_epoch = 1 #number of repeat times for one epoch training


    if not os.path.exists(opt.outf):
        os.makedirs(opt.outf)
 
    if not os.path.exists(opt.log_dir):
        os.makedirs(opt.log_dir)


    estimator = PoseNetGlobal(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1,22))
    output_format = [otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
                     otypes.IMAGE_CROPPED,
                     otypes.MODEL_POINTS_TRANSFORMED,
                     otypes.MODEL_POINTS,
                     otypes.OBJECT_LABEL,
                     ]
        
    dataset = YCBDataset(opt.dataset_root, mode='train_syn_grid', 
                         object_list = object_list, 
                         output_data = output_format,
                         resample_on_error = True,
                         preprocessors = [YCBOcclusionAugmentor(opt.dataset_root), 
                                          ColorJitter(), 
                                          InplaneRotator()],
                         postprocessors = [ImageNormalizer(), PointMeanNormalizer(0)], #PointShifter()],
                         refine = opt.refine_start,
                         image_size = [640, 480], num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers-1)
    
    test_dataset = YCBDataset(opt.dataset_root, mode='valid', 
                         object_list = object_list, 
                         output_data = output_format,
                         resample_on_error = True,
                         preprocessors = [],
                         postprocessors = [ImageNormalizer(), PointMeanNormalizer(0)],
                         refine = opt.refine_start,
                         image_size = [640, 480], num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1)
    
    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)
                
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))


        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            else:
                torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            dataset = YCBDataset(opt.dataset_root, mode='train_syn_grid', 
                                 object_list = object_list, 
                                 output_data = output_format,
                                 resample_on_error = True,
                                 preprocessors = [YCBOcclusionAugmentor(opt.dataset_root), 
                                                  ColorJitter(), 
                                                  InplaneRotator()],
                                 postprocessors = [ImageNormalizer(), PointShifter()],
                                 refine = opt.refine_start,
                                 image_size = [640, 480], num_points=1000)
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
            
            test_dataset = YCBDataset(opt.dataset_root, mode='valid', 
                                 object_list = object_list, 
                                 output_data = output_format,
                                 resample_on_error = True,
                                 preprocessors = [],
                                 postprocessors = [ImageNormalizer()],
                                 refine = opt.refine_start,
                                 image_size = [640, 480], num_points=1000)
            testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
            opt.num_points_mesh = dataset.num_pt_mesh_large

            print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Example #11
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)
            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points,
                                                   False, opt.dataset_root,
                                                   0.0, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Example #12
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.outf = proj_dir+'trained_models/ycb'  # folder to save trained models
        opt.log_dir = proj_dir+'experiments/logs/ycb'  # folder to save logs
        opt.repeat_epoch = 1  # number of repeat times for one epoch training
    else:
        print('Unknown dataset')
        return

    estimator = SymNet(num_points = opt.num_points)
    estimator.cuda()

    if opt.resume_symnet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_symnet)))

    opt.refine_start = False
    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
    opt.w *= opt.w_rate

    if opt.dataset == 'ycb':
        dataset = SymDataset_ycb('train', opt.num_points, False, opt.dataset_root, proj_dir,opt.noise_trans, opt.refine_start)
        test_dataset = SymDataset_ycb('test', opt.num_points, False, opt.dataset_root, proj_dir,0.0, opt.refine_start)

    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh)

    best_test = 0

    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        train_err_cent = 0.0
        train_loss_ref = 0.0
        train_err_ref = 0.0
        train_err_num = 0.0
        train_err_mode = 0.0

        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img,  idx, target_s, target_num, target_mode, pt_num = data  # the original version
                if idx not in sym_list:
                    continue
                points, choose, img, idx, target_s, target_num, target_mode = Variable(points).cuda(), \
                                                                             Variable(choose).cuda(), \
                                                                             Variable(img).cuda(), \
                                                                             Variable(idx).cuda(),\
                                                                             Variable(target_s).cuda(), \
                                                                             Variable(target_num).cuda(),\
                                                                             Variable(target_mode).cuda()

                pred_cent, pred_ref,pred_foot_ref,pred_rot, pred_num, pred_mode, emb = estimator(img, points, choose)
                loss, dis, error_cent, loss_ref, error_ref, error_num, error_mode = criterion(
                                                             pred_cent, pred_ref,pred_foot_ref,pred_rot,
                                                            pred_num, pred_mode, target_s,
                                                            points, opt.w, target_mode)

                loss.backward()

                train_dis_avg += dis.item()
                train_err_cent += error_cent.item()
                train_loss_ref += loss_ref.item()
                train_err_ref += error_ref.item()
                train_err_num += error_num.item()
                train_err_mode += error_mode.item()

                train_count += 1

                if train_count % opt.batch_size == 0:

                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} error_ref: {8} loss_ref:{9} loss_cent: {7} loss_num: {5} loss_mode:{6} Avg_loss:{4} cls_id: {10}'.format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size,
                            train_err_num / opt.batch_size, train_err_mode / opt.batch_size,
                            train_err_cent / opt.batch_size, train_err_ref / opt.batch_size,
                            train_loss_ref / opt.batch_size, idx.data.cpu().numpy().reshape(-1)[0]))

                    optimizer.step()
                    optimizer.zero_grad()

                    train_dis_avg = 0
                    train_err_cent = 0
                    train_err_num = 0
                    train_err_mode = 0
                    train_err_ref = 0
                    train_loss_ref = 0

                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(), '{0}/sym_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))


        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))

        test_dis = 0.0  # add symmetry dis
        test_err_num = 0.0
        test_err_mode = 0.0
        test_err_ref = 0.0
        test_loss_ref = 0.0
        test_err_cent = 0.0
        test_count = 0
        ang_tps = 0
        estimator.eval()
        # refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, idx, target_s, target_num,target_mode,pt_num = data
            if idx not in sym_list:
                continue
            points, choose, img, idx, target_s, target_num, target_mode = \
                                                             Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(idx).cuda(), \
                                                             Variable(target_s).cuda(), \
                                                             Variable(target_num).cuda(),\
                                                             Variable(target_mode).cuda()

            pred_cent, pred_ref, pred_foot_ref, pred_rot, pred_num, pred_mode, emb = estimator(img, points, choose)
            _, dis, error_cent, loss_ref, error_ref, error_num, error_mode = criterion(
                pred_cent, pred_ref, pred_foot_ref, pred_rot,
                pred_num, pred_mode, target_s,
                points, opt.w, target_mode)

            test_dis += dis.item()
            test_err_cent += error_cent.item()
            test_err_num += error_num.item()
            test_err_mode += error_mode.item()
            test_loss_ref += loss_ref.item()
            test_err_ref += error_ref.item()

            logger.info(
                'Test time {0} Test Frame:{1} error_ref:{6} loss_ref:{7} loss_cent:{5} loss_num:{3} loss_mode:{4} total_loss:{2} cls_id{8}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), test_count, dis, error_num, error_mode,
                    error_cent, error_ref, loss_ref, idx.data.cpu().numpy().reshape(-1)[0]))

            test_count += 1

            if error_ref <= 20:
                ang_tps += 1

        test_dis = test_dis / test_count
        test_err_num = test_err_num / test_count
        test_err_mode = test_err_mode / test_count
        test_err_ref = test_err_ref / test_count
        test_loss_ref = test_loss_ref / test_count
        test_err_cent = test_err_cent / test_count

        pect_ang_tps = ang_tps / test_count
        # angle_loss = math.cos(test_err_ref)

        logger.info('Test time {0} Epoch {1} TEST FINISH loss_ref:{7} angle_tps{8} Avg dis:{2} error_num:{3} error_mode:{4} error_cent:{5} error_ref:{6} '.format(time.strftime("%Hh %Mm %Ss",
                    time.gmtime(time.time() - st_time)), epoch, test_dis, test_err_num, test_err_mode, test_err_cent,test_err_ref, test_loss_ref, pect_ang_tps))
        if pect_ang_tps >= best_test:
            best_test = pect_ang_tps
            torch.save(estimator.state_dict(), '{0}/sym_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))

            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if test_err_ref < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        if i%20==0:
            logger.info('Epoch is [{}/{}], mini-batch is [{}/{}], time consumption is {:.8f}, batch_loss is {:.8f}'.format( \
            epoch + 1, args.epoch_iter, i + 1, int(len(train_loader_source)), time.time() - start_time, loss.item()))

        # if i>4000 and i%1000==0:
        #     f_score = test(epoch, model, args.t_eval_path, args.t_output_path, f_score, args.save_model)
    logger.info('epoch_loss is {:.8f}, epoch_time is {:.8f}'.format(epoch_loss / int(7200 / args.batch_size),time.time() - epoch_time))
    logger.info(time.asctime(time.localtime(time.time())))



if __name__ == '__main__':
    args.workspace = os.path.join(args.workspace, args.exp_name)
    os.makedirs(args.workspace, exist_ok=True)
    logger = setup_logger(os.path.join(args.workspace, 'train_MSRA_log'))
    criterion = Loss()
    device = torch.device("cuda")
    model = EAST()
    # model = nn.DataParallel(model)
    data_parallel = False
    if torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)
        data_parallel = True
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[150,220], gamma=0.1)

    # 先产生第一次的pseudo-label
    logger.info("loading pretrained model from "+args.resume)
    # model.load_state_dict(torch.load(args.resume))
Example #14
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if opt.dataset == 'ycb':
        opt.dataset_root = 'datasets/ycb/YCB_Video_Dataset'
        opt.num_objects = 21
        opt.num_points = 1000
        opt.result_dir = 'results/ycb'
        opt.repeat_epoch = 1
    elif opt.dataset == 'linemod':
        opt.dataset_root = 'datasets/linemod/Linemod_preprocessed'
        opt.num_objects = 13
        opt.num_points = 500
        opt.result_dir = 'results/linemod'
        opt.repeat_epoch = 1
    else:
        print('unknown dataset')
        return
    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans)
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans)
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)
    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()
    opt.diameters = dataset.get_diameter()
    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<')
    print('length of the training set: {0}'.format(len(dataset)))
    print('length of the testing set: {0}'.format(len(test_dataset)))
    print('number of sample points on mesh: {0}'.format(opt.num_points_mesh))
    print('symmetrical object list: {0}'.format(opt.sym_list))

    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.FileWriter(opt.result_dir)
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
    # network
    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        num_rot=opt.num_rot)
    estimator.cuda()
    # loss
    criterion = Loss(opt.sym_list, estimator.rot_anchors)
    knn = KNearestNeighbor(1)
    # learning rate decay
    best_test = np.Inf
    opt.first_decay_start = False
    opt.second_decay_start = False
    # if resume training
    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load(opt.resume_posenet))
        model_name_parsing = (opt.resume_posenet.split('.')[0]).split('_')
        best_test = float(model_name_parsing[-1])
        opt.start_epoch = int(model_name_parsing[-2]) + 1
        if best_test < 0.016 and not opt.first_decay_start:
            opt.first_decay_start = True
            opt.lr *= 0.6
        if best_test < 0.013 and not opt.second_decay_start:
            opt.second_decay_start = True
            opt.lr *= 0.5
    # optimizer
    optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)
    global_step = (len(dataset) //
                   opt.batch_size) * opt.repeat_epoch * (opt.start_epoch - 1)
    # train
    st_time = time.time()
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%02d' % epoch,
            os.path.join(opt.result_dir, 'epoch_%02d_train_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_loss_avg = 0.0
        train_loss_r_avg = 0.0
        train_loss_t_avg = 0.0
        train_loss_reg_avg = 0.0
        estimator.train()
        optimizer.zero_grad()
        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target_t, target_r, model_points, idx, gt_t = data
                obj_diameter = opt.diameters[idx]
                points, choose, img, target_t, target_r, model_points, idx = Variable(points).cuda(), \
                                                                             Variable(choose).cuda(), \
                                                                             Variable(img).cuda(), \
                                                                             Variable(target_t).cuda(), \
                                                                             Variable(target_r).cuda(), \
                                                                             Variable(model_points).cuda(), \
                                                                             Variable(idx).cuda()
                pred_r, pred_t, pred_c = estimator(img, points, choose, idx)
                loss, loss_r, loss_t, loss_reg = criterion(
                    pred_r, pred_t, pred_c, target_r, target_t, model_points,
                    idx, obj_diameter)
                loss.backward()
                train_loss_avg += loss.item()
                train_loss_r_avg += loss_r.item()
                train_loss_t_avg += loss_t.item()
                train_loss_reg_avg += loss_reg.item()
                train_count += 1
                if train_count % opt.batch_size == 0:
                    global_step += 1
                    lr = opt.lr
                    optimizer.step()
                    optimizer.zero_grad()
                    # write results to tensorboard
                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag='learning_rate', simple_value=lr),
                        tf.Summary.Value(tag='loss',
                                         simple_value=train_loss_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_r',
                                         simple_value=train_loss_r_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_t',
                                         simple_value=train_loss_t_avg /
                                         opt.batch_size),
                        tf.Summary.Value(tag='loss_reg',
                                         simple_value=train_loss_reg_avg /
                                         opt.batch_size)
                    ])
                    tb_writer.add_summary(summary, global_step)
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_loss:{4:f}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_loss_avg / opt.batch_size))
                    train_loss_avg = 0.0
                    train_loss_r_avg = 0.0
                    train_loss_t_avg = 0.0
                    train_loss_reg_avg = 0.0

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%02d_test' % epoch,
            os.path.join(opt.result_dir, 'epoch_%02d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        save_model = False
        estimator.eval()
        success_count = [0 for i in range(opt.num_objects)]
        num_count = [0 for i in range(opt.num_objects)]

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target_t, target_r, model_points, idx, gt_t = data
            obj_diameter = opt.diameters[idx]
            points, choose, img, target_t, target_r, model_points, idx = Variable(points).cuda(), \
                                                                         Variable(choose).cuda(), \
                                                                         Variable(img).cuda(), \
                                                                         Variable(target_t).cuda(), \
                                                                         Variable(target_r).cuda(), \
                                                                         Variable(model_points).cuda(), \
                                                                         Variable(idx).cuda()
            pred_r, pred_t, pred_c = estimator(img, points, choose, idx)
            loss, _, _, _ = criterion(pred_r, pred_t, pred_c, target_r,
                                      target_t, model_points, idx,
                                      obj_diameter)
            test_count += 1
            # evalaution
            how_min, which_min = torch.min(pred_c, 1)
            pred_r = pred_r[0][which_min[0]].view(-1).cpu().data.numpy()
            pred_r = quaternion_matrix(pred_r)[:3, :3]
            pred_t, pred_mask = ransac_voting_layer(points, pred_t)
            pred_t = pred_t.cpu().data.numpy()
            model_points = model_points[0].cpu().detach().numpy()
            pred = np.dot(model_points, pred_r.T) + pred_t
            target = target_r[0].cpu().detach().numpy() + gt_t[0].cpu(
            ).data.numpy()
            if idx[0].item() in opt.sym_list:
                pred = torch.from_numpy(pred.astype(
                    np.float32)).cuda().transpose(1, 0).contiguous()
                target = torch.from_numpy(target.astype(
                    np.float32)).cuda().transpose(1, 0).contiguous()
                inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
                target = torch.index_select(target, 1, inds.view(-1) - 1)
                dis = torch.mean(torch.norm(
                    (pred.transpose(1, 0) - target.transpose(1, 0)), dim=1),
                                 dim=0).item()
            else:
                dis = np.mean(np.linalg.norm(pred - target, axis=1))
            logger.info(
                'Test time {0} Test Frame No.{1} loss:{2:f} confidence:{3:f} distance:{4:f}'
                .format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    test_count, loss, how_min[0].item(), dis))
            if dis < 0.1 * opt.diameters[idx[0].item()]:
                success_count[idx[0].item()] += 1
            num_count[idx[0].item()] += 1
            test_dis += dis
        # compute accuracy
        accuracy = 0.0
        for i in range(opt.num_objects):
            accuracy += float(success_count[i]) / num_count[i]
            logger.info('Object {0} success rate: {1}'.format(
                test_dataset.objlist[i],
                float(success_count[i]) / num_count[i]))
        accuracy = accuracy / opt.num_objects
        test_dis = test_dis / test_count
        # log results
        logger.info(
            'Test time {0} Epoch {1} TEST FINISH Avg dis: {2:f}, Accuracy: {3:f}'
            .format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis, accuracy))
        # tensorboard
        summary = tf.Summary(value=[
            tf.Summary.Value(tag='accuracy', simple_value=accuracy),
            tf.Summary.Value(tag='test_dis', simple_value=test_dis)
        ])
        tb_writer.add_summary(summary, global_step)
        # save model
        if test_dis < best_test:
            best_test = test_dis
        torch.save(
            estimator.state_dict(),
            '{0}/pose_model_{1:02d}_{2:06f}.pth'.format(
                opt.result_dir, epoch, best_test))
        # adjust learning rate if necessary
        if best_test < 0.016 and not opt.first_decay_start:
            opt.first_decay_start = True
            opt.lr *= 0.6
            optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)
        if best_test < 0.013 and not opt.second_decay_start:
            opt.second_decay_start = True
            opt.lr *= 0.5
            optimizer = torch.optim.Adam(estimator.parameters(), lr=opt.lr)

        print(
            '>>>>>>>>----------epoch {0} test finish---------<<<<<<<<'.format(
                epoch))
Example #15
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_plus_bing'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_plus_bing'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training
    estimator = PoseNetPlusDuelBing(num_points=opt.num_points,
                                    num_obj=opt.num_objects)
    estimator.cuda()

    train_writer = SummaryWriter(comment='duel_binham_train')
    valid_writer = SummaryWriter(comment='duel_binham_valid')

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
    elif opt.finetune_posenet != '':
        pretrained_dict = torch.load(opt.finetune_posenet)
        model_dict = estimator.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        model_dict.update(pretrained_dict)
        estimator.load_state_dict(model_dict)
        for k, v in estimator.named_parameters():
            if (k in pretrained_dict):
                v.requires_grad = False
        opt.log_dir += '_cont'
        opt.outf += '_cont'

    opt.refine_start = False
    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.QUATERNION,
        otypes.MODEL_POINTS_TRANSFORMED,
        otypes.MODEL_POINTS,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(
        opt.dataset_root,
        mode='train_syn_grid_valid',
        object_list=object_list,
        output_data=output_format,
        resample_on_error=True,
        preprocessors=[
            YCBOcclusionAugmentor(opt.dataset_root),
            ColorJitter(),
            #InplaneRotator(),
        ],
        postprocessors=[ImageNormalizer(), PointShifter()],
        image_size=[640, 480],
        num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)

    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion_dist = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_lik = DuelLoss(opt.num_points_mesh, opt.sym_list)

    best_dis = np.Inf
    best_lik = -np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    cum_batch_count = 0
    mean_err = 0
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        train_lik_avg = 0.0
        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, quat, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(quat).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                    img, points, choose, idx)
                loss_dist, dis, new_points, new_target = criterion_dist(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                how_max, which_max = torch.max(pred_c.detach(), 1)
                pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
                pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

                max_q = pred_q[which_max.item()]
                max_bq = pred_bq[0, which_max.item()] / torch.norm(
                    pred_bq[0, which_max.item()])
                max_bz = pred_bz[0, which_max.item()]

                loss_lik, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                              -torch.abs(max_bz.view(-1)),
                                              quat)
                loss = loss_dist + loss_lik
                loss.backward()

                train_dis_avg += dis.item()
                train_lik_avg += np.log(lik.item())
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4} Avg_lik:{5}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size,
                            train_lik_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0
                    train_lik_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(),
                               '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_lik = 0.0
        test_count = 0
        estimator.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, quat, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(quat).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                img, points, choose, idx)
            _, dis, new_points, new_target = criterion_dist(
                pred_r, pred_t, pred_c, target, model_points, idx, points,
                opt.w, opt.refine_start)
            how_max, which_max = torch.max(pred_c.detach(), 1)
            pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
            pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

            max_q = pred_q[which_max.item()]
            max_bq = pred_bq[0, which_max.item()] / torch.norm(
                pred_bq[0, which_max.item()])
            max_bz = pred_bz[0, which_max.item()]

            _, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                   -torch.abs(max_bz.view(-1)), quat)

            test_dis += dis.item()
            test_lik += np.log(lik.item())
            logger.info(
                'Test time {0} Test Frame No.{1} dis:{2} lik:{3}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    test_count, dis, lik))

            test_count += 1

        test_dis = test_dis / test_count
        test_lik = test_lik / test_count
        logger.info(
            'Test time {0} Epoch {1} TEST FINISH Avg dis: {2} Avg lik: {3}'.
            format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis, test_lik))
        if test_dis <= best_dis or test_lik >= best_lik:
            best_dis = min(test_dis, best_dis)
            best_lik = max(test_lik, best_lik)

            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_{1}_{2}_{3}.pth'.format(
                    opt.outf, epoch, test_dis, test_lik))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_dis < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
    # print("\n")
    # print("         ---------------------------------------------------------")
    # print("                     best_f_score:", f_score)
    # print("         ---------------------------------------------------------")
    return f_score_new


if __name__ == '__main__':
    train_img_path = os.path.abspath('/data/data_weijiawu/SynthText')
    train_gt_path = os.path.abspath('/data/data_weijiawu/SynthText/gt.mat')

    args.workspace = os.path.join(args.workspace, args.exp_name)
    os.makedirs(args.workspace, exist_ok=True)

    logger = setup_logger(os.path.join(args.workspace, 'train_synthtext_log'))
    criterion = Loss()
    device = torch.device("cuda")
    model = EAST()
    data_parallel = False
    if torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)
        data_parallel = True
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=[args.epoch_iter // 2],
                                         gamma=0.1)

    # 先产生第一次的pseudo-label
    # logger.info("loading pretrained model from ",args.resume)
        logger.info('Epoch is [{}/{}], mini-batch is [{}/{}], time consumption is {:.8f}, batch_loss is {:.8f}'.format( \
            epoch + 1, args.epoch_iter, i + 1, int(len(train_loader_source)), time.time() - start_time, loss.item()))

        # if i>4000 and i%1000==0:
        #     f_score = test(epoch, model, args.t_eval_path, args.t_output_path, f_score, args.save_model)
    logger.info('epoch_loss is {:.8f}, epoch_time is {:.8f}'.format(
        epoch_loss / int(7200 / args.batch_size),
        time.time() - epoch_time))
    logger.info(time.asctime(time.localtime(time.time())))


if __name__ == '__main__':
    args.workspace = os.path.join(args.workspace, args.exp_name)
    os.makedirs(args.workspace, exist_ok=True)
    logger = setup_logger(os.path.join(args.workspace, 'train_icdar15_log'))

    criterion = Loss()
    device = torch.device("cuda")
    model = EAST()
    data_parallel = False
    if torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)
        data_parallel = True
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=[args.epoch_iter // 2],
                                         gamma=0.1)

    # 先产生第一次的pseudo-label
Example #18
0
def train_net():
    # set result directory
    if not os.path.exists(opt.result_dir):
        os.makedirs(opt.result_dir)
    tb_writer = tf.summary.FileWriter(opt.result_dir)
    logger = setup_logger('train_log', os.path.join(opt.result_dir, 'log.txt'))
    for key, value in vars(opt).items():
        logger.info(key + ': ' + str(value))
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
    # model & loss
    estimator = DeformNet(opt.n_cat, opt.nv_prior)
    estimator.cuda()
    # pdb.set_trace()
    criterion = Loss(opt.corr_wt, opt.cd_wt, opt.entropy_wt, opt.deform_wt)
    chamferD = ChamferLoss()
    if opt.resume_model != '':
        estimator.load_state_dict(torch.load(opt.resume_model))
    # dataset
    # 253445 images found. = [249127, 4318]
    # 1101 models loaded.
    train_dataset = PoseDataset(opt.dataset, 'train', opt.data_dir, opt.n_pts,
                                opt.img_size)
    # 2754 images found.
    # 18 models loaded.
    val_dataset = PoseDataset(opt.dataset, 'test', opt.data_dir, opt.n_pts,
                              opt.img_size)
    # start training
    st_time = time.time()
    train_steps = 1500
    global_step = train_steps * (opt.start_epoch - 1)
    n_decays = len(opt.decay_epoch)
    assert len(opt.decay_rate) == n_decays
    for i in range(n_decays):
        if opt.start_epoch > opt.decay_epoch[i]:
            decay_count = i
    # pdb.set_trace()
    train_size = train_steps * opt.batch_size
    indices = []
    page_start = -train_size
    for epoch in range(opt.start_epoch, opt.max_epoch + 1):
        # # train one epoch
        # logger.info('Time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + \
        #             ', ' + 'Epoch %02d' % epoch + ', ' + 'Training started'))
        # # create optimizer and adjust learning rate if needed
        # if decay_count < len(opt.decay_rate):
        #     if epoch > opt.decay_epoch[decay_count]:
        #         current_lr = opt.lr * opt.decay_rate[decay_count]
        #         optimizer = torch.optim.Adam(estimator.parameters(), lr=current_lr)
        #         decay_count += 1
        # # sample train subset
        # page_start += train_size
        # len_last = len(indices) - page_start
        # if len_last < train_size:
        #     indices = indices[page_start:]
        #     if opt.dataset == 'CAMERA+Real':
        #         # CAMERA : Real = 3 : 1
        #         camera_len = train_dataset.subset_len[0]
        #         real_len = train_dataset.subset_len[1]
        #         real_indices = list(range(camera_len, camera_len+real_len))
        #         camera_indices = list(range(camera_len))
        #         n_repeat = (train_size - len_last) // (4 * real_len) + 1
        #         data_list = random.sample(camera_indices, 3*n_repeat*real_len) + real_indices*n_repeat
        #         random.shuffle(data_list)
        #         indices += data_list
        #     else:
        #         data_list = list(range(train_dataset.length))
        #         for i in range((train_size - len_last) // train_dataset.length + 1):
        #             random.shuffle(data_list)
        #             indices += data_list
        #     page_start = 0
        # train_idx = indices[page_start:(page_start+train_size)]
        # train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_idx)
        # train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, sampler=train_sampler,
        #                                                num_workers=opt.num_workers, pin_memory=True)
        # estimator.train()
        # for i, data in enumerate(train_dataloader, 1):
        #     points, rgb, choose, cat_id, model, prior, sRT, nocs = data
        #     points = points.cuda()
        #     rgb = rgb.cuda()
        #     choose = choose.cuda()
        #     cat_id = cat_id.cuda()
        #     model = model.cuda()
        #     prior = prior.cuda()
        #     sRT = sRT.cuda()
        #     nocs = nocs.cuda()
        #     assign_mat, deltas = estimator(points, rgb, choose, cat_id, prior)
        #     loss, corr_loss, cd_loss, entropy_loss, deform_loss = criterion(assign_mat, deltas, prior, nocs, model)
        #     optimizer.zero_grad()
        #     loss.backward()
        #     optimizer.step()
        #     global_step += 1
        #     # write results to tensorboard
        #     summary = tf.Summary(value=[tf.Summary.Value(tag='learning_rate', simple_value=current_lr),
        #                                 tf.Summary.Value(tag='train_loss', simple_value=loss),
        #                                 tf.Summary.Value(tag='corr_loss', simple_value=corr_loss),
        #                                 tf.Summary.Value(tag='cd_loss', simple_value=cd_loss),
        #                                 tf.Summary.Value(tag='entropy_loss', simple_value=entropy_loss),
        #                                 tf.Summary.Value(tag='deform_loss', simple_value=deform_loss)])
        #     tb_writer.add_summary(summary, global_step)
        #     if i % 10 == 0:
        #         logger.info('Batch {0} Loss:{1:f}, corr_loss:{2:f}, cd_loss:{3:f}, entropy_loss:{4:f}, deform_loss:{5:f}'.format(
        #             i, loss.item(), corr_loss.item(), cd_loss.item(), entropy_loss.item(), deform_loss.item()))
        #
        # logger.info('>>>>>>>>----------Epoch {:02d} train finish---------<<<<<<<<'.format(epoch))

        # evaluate one epoch
        logger.info('Time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Epoch %02d' % epoch + ', ' + 'Testing started'))
        val_loss = 0.0
        total_count = np.zeros((opt.n_cat, ), dtype=int)
        strict_success = np.zeros((opt.n_cat, ),
                                  dtype=int)  # 5 degree and 5 cm
        easy_success = np.zeros((opt.n_cat, ), dtype=int)  # 10 degree and 5 cm
        iou_success = np.zeros((opt.n_cat, ),
                               dtype=int)  # relative scale error < 0.1
        # sample validation subset
        # val_size = 1500
        # val_idx = random.sample(list(range(val_dataset.length)), val_size)
        # val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_idx)
        # val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=1, sampler=val_sampler,
        #                                              num_workers=opt.num_workers, pin_memory=True)
        val_dataloader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=1,
            num_workers=opt.num_workers,
            pin_memory=True)
        estimator.eval()
        cd_num = torch.zeros(6)
        prior_cd = torch.zeros(6)
        deform_cd = torch.zeros(6)
        # pdb.set_trace()
        for i, data in enumerate(val_dataloader, 1):
            points, rgb, choose, cat_id, model, prior, sRT, nocs = data
            points = points.cuda()
            rgb = rgb.cuda()
            choose = choose.cuda()
            cat_id = cat_id.cuda()
            model = model.cuda()
            prior = prior.cuda()
            sRT = sRT.cuda()
            nocs = nocs.cuda()
            assign_mat, deltas = estimator(points, rgb, choose, cat_id, prior)
            loss, _, _, _, _ = criterion(assign_mat, deltas, prior, nocs,
                                         model)
            # pdb.set_trace()
            prior_loss, _, _ = chamferD(prior, model)
            deform_loss, _, _ = chamferD(prior + deltas, model)

            idx = cat_id.item()
            cd_num[idx] += 1
            prior_cd[idx] += prior_loss.item()
            deform_cd[idx] += deform_loss.item()

            # estimate pose and scale
            inst_shape = prior + deltas
            assign_mat = F.softmax(assign_mat, dim=2)
            nocs_coords = torch.bmm(assign_mat, inst_shape)
            nocs_coords = nocs_coords.detach().cpu().numpy()[0]
            points = points.cpu().numpy()[0]
            # use choose to remove repeated points
            choose = choose.cpu().numpy()[0]
            _, choose = np.unique(choose, return_index=True)
            nocs_coords = nocs_coords[choose, :]
            points = points[choose, :]
            _, _, _, pred_sRT = estimateSimilarityTransform(
                nocs_coords, points)
            # evaluate pose
            cat_id = cat_id.item()
            if pred_sRT is not None:
                sRT = sRT.detach().cpu().numpy()[0]
                R_error, T_error, IoU = compute_sRT_errors(pred_sRT, sRT)
                if R_error < 5 and T_error < 0.05:
                    strict_success[cat_id] += 1
                if R_error < 10 and T_error < 0.05:
                    easy_success[cat_id] += 1
                if IoU < 0.1:
                    iou_success[cat_id] += 1
            total_count[cat_id] += 1
            val_loss += loss.item()
            if i % 100 == 0:
                logger.info('Batch {0} Loss:{1:f}'.format(i, loss.item()))
        # pdb.set_trace()
        deform_cd_metric = (deform_cd / cd_num) * 1000
        print(
            "recon: {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f}"
            .format(deform_cd_metric[0], deform_cd_metric[1],
                    deform_cd_metric[2], deform_cd_metric[3],
                    deform_cd_metric[4], deform_cd_metric[5],
                    torch.mean(deform_cd_metric)))
        prior_cd_metric = (prior_cd / cd_num) * 1000
        print(
            "prior: {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f} : {:.2f}"
            .format(prior_cd_metric[0], prior_cd_metric[1], prior_cd_metric[2],
                    prior_cd_metric[3], prior_cd_metric[4], prior_cd_metric[5],
                    torch.mean(prior_cd_metric)))
Example #19
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        output_results = 'check_linemod.txt'
        opt.repeat_epoch = 20

    elif opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training

    elif opt.dataset == 'ycb-syn':
        opt.num_objects = 31  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/ycb_syn'
        opt.outf = 'trained_models/ycb_syn/ycb_syn2'  # folder to save trained models
        opt.log_dir = 'experiments/logs/ycb_syn/ycb_syn2'  # folder to save logs
        output_results = 'check_ycb_syn.txt'

        opt.w = 0.05
        opt.refine_margin = 0.01

    elif opt.dataset == 'arl':
        opt.num_objects = 10  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl/clutter/arl_finetune_syn_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl/clutter/arl_finetune_syn_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.0045

        # TODO
        opt.repeat_epoch = 20
        opt.start_epoch = 0
        opt.resume_posenet = 'pose_model_1_0.012397416144377301.pth'
        opt.resume_refinenet = 'pose_refine_model_153_0.004032851301599294.pth'

    elif opt.dataset == 'arl1':
        opt.num_objects = 5  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl1/clutter/arl_real_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl1/clutter/arl_real_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # opt.start_epoch = 120
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_115_0.008727498716640046.pth'

    elif opt.dataset == 'elevator':
        opt.num_objects = 1  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/elevator_dataset'
        opt.outf = 'trained_models/elevator/elevator_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/elevator/elevator_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # TODO
        opt.repeat_epoch = 40
        # opt.start_epoch = 47
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_46_0.007581770288279472.pth'

    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = False
        opt.decay_start = False
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'arl':
        dataset = PoseDataset_arl('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'arl1':
        dataset = PoseDataset_arl1('train', opt.num_points, True,
                                   opt.dataset_root, opt.noise_trans,
                                   opt.refine_start)
    elif opt.dataset == 'elevator':
        dataset = PoseDataset_elevator('train', opt.num_points, True,
                                       opt.dataset_root, opt.noise_trans,
                                       opt.refine_start)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)

    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        test_dataset = PoseDataset_ycb_syn('test', opt.num_points, True,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'arl':
        test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'arl1':
        test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                        opt.dataset_root, 0.0,
                                        opt.refine_start)
    elif opt.dataset == 'elevator':
        test_dataset = PoseDataset_elevator('test', opt.num_points, True,
                                            opt.dataset_root, 0.0,
                                            opt.refine_start)

    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    ######################
    ######################

    # TODO (ak): set up tensor board
    # if not os.path.exists(opt.log_dir):
    #     os.makedirs(opt.log_dir)
    #
    # writer = SummaryWriter(opt.log_dir)

    ######################
    ######################

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):

            ##################
            # train
            ##################

            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data

                # TODO: txt file
                # fw = open(test_folder + output_results, 'w')
                # fw.write('Points\n{0}\n\nchoose\n{1}\n\nimg\n{2}\n\ntarget\n{3}\n\nmodel_points\n{4}'.format(points, choose, img, target, model_points))
                # fw.close()

                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {} Epoch {} Batch {} Frame {}/{} Avg_dis: {:.2f} [cm]'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, len(dataset.list),
                            train_dis_avg / opt.batch_size * 100))
                    optimizer.step()
                    optimizer.zero_grad()

                    # TODO: tensorboard
                    # if train_count != 0 and train_count % 250 == 0:
                    #     scalar_info = {'loss': loss.item(),
                    #                    'dis': train_dis_avg / opt.batch_size}
                    #     for key, val in scalar_info.items():
                    #         writer.add_scalar(key, val, train_count)

                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

                    # TODO: tensorboard
                    # scalar_info = {'loss': loss.item(),
                    #                'dis': dis.item()}
                    # for key, val in scalar_info.items():
                    #     writer.add_scalar(key, val, train_count)

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {} Test Frame No.{} dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis * 100))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info(
            'Test time {} Epoch {} TEST FINISH Avg dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis * 100))

        # TODO: tensorboard
        # scalar_info = {'test dis': test_dis}
        # for key, val in scalar_info.items():
        #     writer.add_scalar(key, val, train_count)

        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'arl':
                dataset = PoseDataset_arl('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'arl1':
                dataset = PoseDataset_arl1('train', opt.num_points, True,
                                           opt.dataset_root, opt.noise_trans,
                                           opt.refine_start)
            elif opt.dataset == 'elevator':
                dataset = PoseDataset_elevator('train', opt.num_points, True,
                                               opt.dataset_root,
                                               opt.noise_trans,
                                               opt.refine_start)

            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points,
                                                   False, opt.dataset_root,
                                                   0.0, opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                test_dataset = PoseDataset_ycb_syn('test', opt.num_points,
                                                   True, opt.dataset_root, 0.0,
                                                   opt.refine_start)
            elif opt.dataset == 'arl':
                test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'arl1':
                test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                                opt.dataset_root, 0.0,
                                                opt.refine_start)
            elif opt.dataset == 'elevator':
                test_dataset = PoseDataset_elevator('test', opt.num_points,
                                                    True, opt.dataset_root,
                                                    0.0, opt.refine_start)

            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Example #20
0
def main(args):
    this_dir = osp.join(osp.dirname(__file__), '.')
    save_dir = osp.join(this_dir, 'checkpoints')
    if not osp.isdir(save_dir):
        os.makedirs(save_dir)
    command = 'python ' + ' '.join(sys.argv)
    logger = utl.setup_logger(osp.join(this_dir, 'log.txt'), command=command)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    utl.set_seed(int(args.seed))

    model = build_model(args)
    if osp.isfile(args.checkpoint):
        checkpoint = torch.load(args.checkpoint,
                                map_location=torch.device('cpu'))
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.apply(utl.weights_init)
    if args.distributed:
        model = nn.DataParallel(model)
    model = model.to(device)

    criterion = utl.MultiCrossEntropyLoss(ignore_index=21).to(device)
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)
    if osp.isfile(args.checkpoint):
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        for param_group in optimizer.param_groups:
            param_group['lr'] = args.lr
        args.start_epoch += checkpoint['epoch']
    softmax = nn.Softmax(dim=1).to(device)

    for epoch in range(args.start_epoch, args.start_epoch + args.epochs):
        if epoch == 21:
            args.lr = args.lr * 0.1
            for param_group in optimizer.param_groups:
                param_group['lr'] = args.lr

        data_loaders = {
            phase: utl.build_data_loader(args, phase)
            for phase in args.phases
        }

        enc_losses = {phase: 0.0 for phase in args.phases}
        enc_score_metrics = []
        enc_target_metrics = []
        enc_mAP = 0.0
        dec_losses = {phase: 0.0 for phase in args.phases}
        dec_score_metrics = []
        dec_target_metrics = []
        dec_mAP = 0.0

        start = time.time()
        for phase in args.phases:
            training = phase == 'train'
            if training:
                model.train(True)
            elif not training and args.debug:
                model.train(False)
            else:
                continue

            with torch.set_grad_enabled(training):
                for batch_idx, (camera_inputs, motion_inputs, enc_target, dec_target) \
                        in enumerate(data_loaders[phase], start=1):
                    batch_size = camera_inputs.shape[0]
                    camera_inputs = camera_inputs.to(device)
                    motion_inputs = motion_inputs.to(device)
                    enc_target = enc_target.to(device).view(
                        -1, args.num_classes)
                    dec_target = dec_target.to(device).view(
                        -1, args.num_classes)

                    enc_score, dec_score = model(camera_inputs, motion_inputs)
                    enc_loss = criterion(enc_score, enc_target)
                    dec_loss = criterion(dec_score, dec_target)
                    enc_losses[phase] += enc_loss.item() * batch_size
                    dec_losses[phase] += dec_loss.item() * batch_size

                    if args.verbose:
                        print(
                            'Epoch: {:2} | iteration: {:3} | enc_loss: {:.5f} dec_loss: {:.5f}'
                            .format(epoch, batch_idx, enc_loss.item(),
                                    dec_loss.item()))

                    if training:
                        optimizer.zero_grad()
                        loss = enc_loss + dec_loss
                        loss.backward()
                        optimizer.step()
                    else:
                        # Prepare metrics for encoder
                        enc_score = softmax(enc_score).cpu().numpy()
                        enc_target = enc_target.cpu().numpy()
                        enc_score_metrics.extend(enc_score)
                        enc_target_metrics.extend(enc_target)
                        # Prepare metrics for decoder
                        dec_score = softmax(dec_score).cpu().numpy()
                        dec_target = dec_target.cpu().numpy()
                        dec_score_metrics.extend(dec_score)
                        dec_target_metrics.extend(dec_target)
        end = time.time()

        if args.debug:
            result_file = 'inputs-{}-epoch-{}.json'.format(args.inputs, epoch)
            # Compute result for encoder
            enc_mAP = utl.compute_result_multilabel(
                args.class_index,
                enc_score_metrics,
                enc_target_metrics,
                save_dir,
                result_file,
                ignore_class=[0, 21],
                save=True,
            )
            # Compute result for decoder
            dec_mAP = utl.compute_result_multilabel(
                args.class_index,
                dec_score_metrics,
                dec_target_metrics,
                save_dir,
                result_file,
                ignore_class=[0, 21],
                save=False,
            )

        # Output result
        logger.output(epoch,
                      enc_losses,
                      dec_losses,
                      len(data_loaders['train'].dataset),
                      len(data_loaders['test'].dataset),
                      enc_mAP,
                      dec_mAP,
                      end - start,
                      debug=args.debug)

        # Save model
        checkpoint_file = 'inputs-{}-epoch-{}.pth'.format(args.inputs, epoch)
        torch.save(
            {
                'epoch':
                epoch,
                'model_state_dict':
                model.module.state_dict()
                if args.distributed else model.state_dict(),
                'optimizer_state_dict':
                optimizer.state_dict(),
            }, osp.join(save_dir, checkpoint_file))
Example #21
0
def main():
    class_id = 0
    class_file = open('datasets/ycb/dataset_config/classes.txt')
    cld = {}
    while 1:
        class_input = class_file.readline()
        if not class_input:
            break

        input_file = open('{0}/models/{1}/points.xyz'.format(
            opt.dataset_root, class_input[:-1]))
        cld[class_id] = []
        while 1:
            input_line = input_file.readline()
            if not input_line:
                break
            input_line = input_line[:-1].split(' ')
            cld[class_id].append([
                float(input_line[0]),
                float(input_line[1]),
                float(input_line[2])
            ])
        cld[class_id] = np.array(cld[class_id])
        input_file.close()

        class_id += 1

    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    symmetry_obj_idx = [12, 15, 18, 19, 20]

    if opt.dataset == 'ycb':
        opt.num_objects = 21  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.outf = 'trained_models/ycb/' + opt.output_dir  # folder to save trained models
        opt.test_output = 'experiments/output/ycb/' + opt.output_dir
        if not os.path.exists(opt.test_output):
            os.makedirs(opt.test_output, exist_ok=True)

        opt.repeat_epoch = 1  # number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        object_max=opt.object_max)
    estimator.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

        opt.refine_start = False
        opt.decay_start = False

    dataset = PoseDataset_ycb('train', opt.num_points, False, opt.dataset_root,
                              opt.noise_trans, opt.seg_type, True)
    test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                   opt.dataset_root, 0.0, opt.seg_type, True)

    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)

    logger = setup_logger(
        'final_eval_tf_with_seg_square',
        os.path.join(opt.test_output, 'final_eval_tf_with_seg_square.txt'))

    object_max = opt.object_max
    total_test_dis = {key: [] for key in range(0, object_max)}
    total_test_count = {key: [] for key in range(0, object_max)}
    dir_test_dis = {key: [] for key in range(0, object_max)}
    dir_test_count = {key: [] for key in range(0, object_max)}

    # for add
    total_unseen_objects = {key: [] for key in range(0, object_max)}
    total_object_without_pose = {key: [] for key in range(0, object_max)}
    dir_add_count = {key: [] for key in range(0, object_max)}
    dir_add_count_unseen = {key: [] for key in range(0, object_max)}
    dir_add_02_count_unseen = {key: [] for key in range(0, object_max)}
    dir_add_pure_count = {key: [] for key in range(0, object_max)}
    dir_add_s_count = {key: [] for key in range(0, object_max)}
    dir_add_02_count = {key: [] for key in range(0, object_max)}
    dir_add_pure_02_count = {key: [] for key in range(0, object_max)}
    dir_add_s_02_count = {key: [] for key in range(0, object_max)}

    total_add_count = {key: [] for key in range(0, object_max)}
    total_add_count_unseen = {key: [] for key in range(0, object_max)}
    total_add_02_count_unseen = {key: [] for key in range(0, object_max)}
    total_add_pure_count = {key: [] for key in range(0, object_max)}
    total_add_s_count = {key: [] for key in range(0, object_max)}
    total_add_02_count = {key: [] for key in range(0, object_max)}
    total_add_pure_02_count = {key: [] for key in range(0, object_max)}
    total_add_s_02_count = {key: [] for key in range(0, object_max)}

    dir_dbd_count = {key: [] for key in range(0, object_max)}
    dir_drr_count = {key: [] for key in range(0, object_max)}
    dir_ada_count = {key: [] for key in range(0, object_max)}
    dir_distance_1_count = {key: [] for key in range(0, object_max)}

    total_dbd_count = {key: [] for key in range(0, object_max)}
    total_drr_count = {key: [] for key in range(0, object_max)}
    total_ada_count = {key: [] for key in range(0, object_max)}
    total_distance_1_count = {key: [] for key in range(0, object_max)}

    last_dis = {key: [] for key in range(0, object_max)}
    for i in range(object_max):
        total_unseen_objects[i] = 0
        total_object_without_pose[i] = 0

        total_test_dis[i] = 0.
        total_test_count[i] = 0
        dir_test_dis[i] = 0.
        dir_test_count[i] = 0
        # for add
        dir_add_count[i] = 0
        dir_add_count_unseen[i] = 0
        dir_add_02_count_unseen[i] = 0
        dir_add_pure_count[i] = 0
        dir_add_s_count[i] = 0
        dir_add_02_count[i] = 0
        total_add_count[i] = 0
        total_add_count_unseen[i] = 0
        total_add_02_count_unseen[i] = 0
        total_add_pure_count[i] = 0
        total_add_s_count[i] = 0
        total_add_02_count[i] = 0
        dir_add_pure_02_count[i] = 0
        dir_add_s_02_count[i] = 0
        total_add_pure_02_count[i] = 0
        total_add_s_02_count[i] = 0

        #   for stable
        dir_dbd_count[i] = 0.
        dir_drr_count[i] = 0
        dir_ada_count[i] = 0.
        dir_distance_1_count[i] = 0.

        total_dbd_count[i] = 0.
        total_drr_count[i] = 0
        total_ada_count[i] = 0.
        total_distance_1_count[i] = 0.
        last_dis[i] = None

    st_time = time.time()
    isFirstInitLastDatafolder = True
    estimator.eval()
    with torch.no_grad():
        for j, data in enumerate(testdataloader, 0):
            if opt.dataset == 'ycb':
                list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                list_full_img, list_focal_length, list_principal_point, list_motion = data
            output_image = Image.open('{0}/{1}-color-masked-square.png'.format(
                opt.dataset_root, list_filename[0][0]))
            OUTPUT_IMAGE_PATH = '{0}/{1}-color-seg-square-output-tf.png'.format(
                opt.dataset_root, list_filename[0][0])
            for list_index in range(len(list_points)):
                points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point, motion \
                    = list_points[list_index], list_choose[list_index], list_img[list_index], \
                      list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                      list_filename[list_index], list_full_img[list_index], list_focal_length[list_index], \
                      list_principal_point[list_index], list_motion[list_index]

                # Temporal Clean when Changing datafolder
                datafolder = filename[0].split('/')[1]
                filehead = filename[0].split('/')[2]
                if isFirstInitLastDatafolder:
                    lastdatafolder = datafolder
                    isFirstInitLastDatafolder = False
                if datafolder != lastdatafolder:
                    logger.info('changing folder from {0} to {1}'.format(
                        lastdatafolder, datafolder))
                    estimator.temporalClear(opt.object_max)
                    # handle dir output
                    for i in range(0, object_max):
                        if dir_test_count[i] != 0:
                            logger.info(
                                'Dir {0} Object {1} dis:{2} with {3} samples'.
                                format(lastdatafolder, i,
                                       dir_test_dis[i] / dir_test_count[i],
                                       dir_test_count[i]))
                            if dir_add_count[i] != 0:
                                logger.info(
                                    'Dir {0} Object {1} add:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_count[i] / dir_test_count[i],
                                        dir_add_02_count[i] /
                                        dir_add_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_count[i] / dir_test_count[i],
                                        0))
                            if dir_add_pure_count[i] != -0:
                                logger.info(
                                    'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_pure_count[i] /
                                        dir_test_count[i],
                                        dir_add_pure_02_count[i] /
                                        dir_add_pure_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_pure_count[i] /
                                        dir_test_count[i], 0))
                            if dir_add_s_count[i] != 0:
                                logger.info(
                                    'Dir {0} Object {1} add_s:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_s_count[i] / dir_test_count[i],
                                        dir_add_s_02_count[i] /
                                        dir_add_s_count[i]))
                            else:
                                logger.info(
                                    'Dir {0} Object {1} add_s:{2} with 0.02: {3}'
                                    .format(
                                        lastdatafolder, i,
                                        dir_add_s_count[i] / dir_test_count[i],
                                        0))
                            logger.info('Dir {0} Object {1} dbd:{2}'.format(
                                lastdatafolder, i,
                                dir_dbd_count[i] / dir_test_count[i]))
                            logger.info('Dir {0} Object {1} drr:{2}'.format(
                                lastdatafolder, i,
                                dir_drr_count[i] / dir_test_count[i]))
                            logger.info('Dir {0} Object {1} ada:{2}'.format(
                                lastdatafolder, i,
                                dir_ada_count[i] / dir_test_count[i]))
                            logger.info(
                                'Dir {0} Object {1} distance_1:{2}'.format(
                                    lastdatafolder, i,
                                    dir_distance_1_count[i] /
                                    dir_test_count[i]))

                    dir_dbd = 0.
                    dir_drr = 0.
                    dir_ada = 0.
                    dir_distance_1 = 0.
                    dir_dis = 0.
                    dir_add = 0
                    dir_add_s = 0
                    dir_add_pure = 0
                    dir_add_02 = 0
                    dir_add_s_02 = 0
                    dir_add_pure_02 = 0
                    dir_count = 0

                    for i in range(object_max):
                        if total_test_count[i] != 0:
                            dir_count += dir_test_count[i]
                            dir_dis += dir_test_dis[i]
                            dir_add += dir_add_count[i]
                            dir_add_pure += dir_add_pure_count[i]
                            dir_add_s += dir_add_s_count[i]
                            dir_add_02 += dir_add_02_count[i]
                            dir_add_pure_02 += dir_add_pure_02_count[i]
                            dir_add_s_02 += dir_add_s_02_count[i]
                            dir_dbd += dir_dbd_count[i]
                            dir_drr += dir_drr_count[i]
                            dir_ada += dir_ada_count[i]
                            dir_distance_1 += dir_distance_1_count[i]

                            dir_test_dis[i] = 0
                            dir_test_count[i] = 0
                            dir_add_count[i] = 0
                            dir_add_pure_count[i] = 0
                            dir_add_s_count[i] = 0
                            dir_add_02_count[i] = 0
                            dir_add_pure_02_count[i] = 0
                            dir_add_s_02_count[i] = 0
                            dir_dbd_count[i] = 0
                            dir_drr_count[i] = 0
                            dir_ada_count[i] = 0
                            dir_distance_1_count[i] = 0
                            last_dis[i] = None

                    logger.info(
                        'Dir {0} \'s total dis:{1} with {2} samples'.format(
                            lastdatafolder, dir_dis / dir_count, dir_count))
                    logger.info(
                        'Dir {0} \'s total add:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add / dir_count,
                            dir_add_02 / dir_add))
                    logger.info(
                        'Dir {0} \'s total add_s:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add_s / dir_count,
                            dir_add_s_02 / dir_add_s))
                    logger.info(
                        'Dir {0} \'s total add_pure:{1} with 0.02: {2}'.format(
                            lastdatafolder, dir_add_pure / dir_count,
                            dir_add_pure_02 / dir_add_pure))
                    logger.info('Dir {0} \'s total dbd:{1}'.format(
                        lastdatafolder, dir_dbd / dir_count))
                    logger.info('Dir {0} \'s total drr:{1}'.format(
                        lastdatafolder, dir_drr / dir_count))
                    logger.info('Dir {0} \'s total ada:{1}'.format(
                        lastdatafolder, dir_ada / dir_count))
                    logger.info('Dir {0} \'s total distance_1:{1}'.format(
                        lastdatafolder, dir_distance_1 / dir_count))

                    # end of handle dir output

                lastdatafolder = datafolder

                points, choose, img, target, model_points, idx = points.cuda(), \
                                                                 choose.cuda(), \
                                                                 img.cuda(), \
                                                                 target.cuda(), \
                                                                 model_points.cuda(), \
                                                                 idx.cuda()
                cloud_path = "experiments/clouds/ycb/{0}/{1}/{2}/{3}_{4}".format(
                    opt.output_dir, 1, datafolder, filehead,
                    int(idx))  # folder to save logs

                pred_r, pred_t, pred_c, x_return = estimator(
                    img, points, choose, idx, focal_length, principal_point,
                    motion, cloud_path)

                # count for unseen object
                if pred_r is None:
                    last_dis[int(idx)] = None
                    total_unseen_objects[int(idx)] += 1
                    total_object_without_pose[int(idx)] += 1
                    continue

                pred_r_ori = copy.deepcopy(pred_r)
                pred_t_ori = copy.deepcopy(pred_t)
                pred_c_ori = copy.deepcopy(pred_c)
                x_return_ori = copy.deepcopy(x_return)

                gt_r, gt_t = get_target(opt.dataset_root, filename, idx)
                if gt_r is None: print('gtr is None')
                is_sym = int(idx) in symmetry_obj_idx
                dis, dis_vector, pred_cloud = calDistance(
                    pred_r_ori, pred_t_ori, pred_c_ori, x_return_ori, gt_r,
                    gt_t, cld[int(idx)], is_sym)
                dis_s, dis_vector_s, _ = calDistance(pred_r_ori, pred_t_ori,
                                                     pred_c_ori, x_return_ori,
                                                     gt_r, gt_t, cld[int(idx)],
                                                     True)
                dis_pure, dis_vector_pure, _ = calDistance(
                    pred_r_ori, pred_t_ori, pred_c_ori, x_return_ori, gt_r,
                    gt_t, cld[int(idx)], False)

                if last_dis[int(idx)] is not None:
                    dir_dbd_count[int(idx)] += torch.norm(dis_vector -
                                                          last_dis[int(idx)])
                    total_dbd_count[int(idx)] += torch.norm(dis_vector -
                                                            last_dis[int(idx)])
                    dir_distance_1_count[int(idx)] += torch.norm(
                        (dis_vector / torch.norm(dis_vector)) -
                        (last_dis[int(idx)] / torch.norm(last_dis[int(idx)])))
                    total_distance_1_count[int(idx)] += torch.norm(
                        (dis_vector / torch.norm(dis_vector)) -
                        (last_dis[int(idx)] / torch.norm(last_dis[int(idx)])))
                    if torch.dot(last_dis[int(idx)], dis_vector) < 0:
                        dir_drr_count[int(idx)] += 1
                        total_drr_count[int(idx)] += 1
                    dir_ada_count[int(idx)] += torch.acos(
                        (torch.dot(last_dis[int(idx)], dis_vector)) /
                        (torch.norm(last_dis[int(idx)]) *
                         torch.norm(dis_vector)))
                    total_ada_count[int(idx)] += torch.acos(
                        (torch.dot(last_dis[int(idx)], dis_vector)) /
                        (torch.norm(last_dis[int(idx)]) *
                         torch.norm(dis_vector)))

                last_dis[int(idx)] = dis_vector

                # calc adds
                if img.shape[1] != 0:
                    dir_test_dis[int(idx)] += dis.item()

                    total_test_dis[int(idx)] += dis.item()
                    dir_test_count[int(idx)] += 1
                    total_test_count[int(idx)] += 1

                    if dis < 0.1:
                        dir_add_count[int(idx)] += 1
                        total_add_count[int(idx)] += 1
                    if dis < 0.02:
                        dir_add_02_count[int(idx)] += 1
                        total_add_02_count[int(idx)] += 1
                    if dis_s < 0.1:
                        dir_add_s_count[int(idx)] += 1
                        total_add_s_count[int(idx)] += 1
                    if dis_s < 0.02:
                        dir_add_s_02_count[int(idx)] += 1
                        total_add_s_02_count[int(idx)] += 1
                    if dis_pure < 0.1:
                        dir_add_pure_count[int(idx)] += 1
                        total_add_pure_count[int(idx)] += 1
                    if dis_pure < 0.02:
                        dir_add_pure_02_count[int(idx)] += 1
                        total_add_pure_02_count[int(idx)] += 1
                else:
                    last_dis[int(idx)] = None
                    if dis < 0.1:
                        dir_add_count_unseen[int(idx)] += 1
                        total_add_count_unseen[int(idx)] += 1
                        total_unseen_objects[int(idx)] += 1
                    if dis < 0.02:
                        dir_add_02_count_unseen[int(idx)] += 1
                        total_add_02_count_unseen[int(idx)] += 1
                        total_unseen_objects[int(idx)] += 1

                output_image = output_transformed_image(
                    OUTPUT_IMAGE_PATH, output_image, pred_cloud, focal_length,
                    principal_point, int(idx))
                logger.info('Test time {0} Test Frame {1} {2} dis:{3}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    filename, idx.item(), dis))

            output_image.save(OUTPUT_IMAGE_PATH)

        # handle dir output
        for i in range(0, object_max):
            if dir_test_count[i] != 0:
                logger.info(
                    'Dir {0} Object {1} dis:{2} with {3} samples'.format(
                        lastdatafolder, i, dir_test_dis[i] / dir_test_count[i],
                        dir_test_count[i]))
                if dir_add_count[i] != 0:
                    logger.info(
                        'Dir {0} Object {1} add:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_count[i] / dir_test_count[i],
                            dir_add_02_count[i] / dir_add_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_count[i] / dir_test_count[i], 0))
                if dir_add_pure_count[i] != -0:
                    logger.info(
                        'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'.
                        format(
                            lastdatafolder, i,
                            dir_add_pure_count[i] / dir_test_count[i],
                            dir_add_pure_02_count[i] / dir_add_pure_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add_pure:{2} with 0.02: {3}'.
                        format(lastdatafolder, i,
                               dir_add_pure_count[i] / dir_test_count[i], 0))
                if dir_add_s_count[i] != 0:
                    logger.info(
                        'Dir {0} Object {1} add_s:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_s_count[i] / dir_test_count[i],
                            dir_add_s_02_count[i] / dir_add_s_count[i]))
                else:
                    logger.info(
                        'Dir {0} Object {1} add_s:{2} with 0.02: {3}'.format(
                            lastdatafolder, i,
                            dir_add_s_count[i] / dir_test_count[i], 0))
                logger.info('Dir {0} Object {1} dbd:{2}'.format(
                    lastdatafolder, i, dir_dbd_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} drr:{2}'.format(
                    lastdatafolder, i, dir_drr_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} ada:{2}'.format(
                    lastdatafolder, i, dir_ada_count[i] / dir_test_count[i]))
                logger.info('Dir {0} Object {1} distance_1:{2}'.format(
                    lastdatafolder, i,
                    dir_distance_1_count[i] / dir_test_count[i]))

        dir_dbd = 0.
        dir_drr = 0.
        dir_ada = 0.
        dir_distance_1 = 0.
        dir_dis = 0.
        dir_add = 0
        dir_add_s = 0
        dir_add_pure = 0
        dir_add_02 = 0
        dir_add_s_02 = 0
        dir_add_pure_02 = 0
        dir_count = 0

        for i in range(object_max):
            if total_test_count[i] != 0:
                dir_count += dir_test_count[i]
                dir_dis += dir_test_dis[i]
                dir_add += dir_add_count[i]
                dir_add_pure += dir_add_pure_count[i]
                dir_add_s += dir_add_s_count[i]
                dir_add_02 += dir_add_02_count[i]
                dir_add_pure_02 += dir_add_pure_02_count[i]
                dir_add_s_02 += dir_add_s_02_count[i]
                dir_dbd += dir_dbd_count[i]
                dir_drr += dir_drr_count[i]
                dir_ada += dir_ada_count[i]
                dir_distance_1 += dir_distance_1_count[i]

                dir_test_dis[i] = 0
                dir_test_count[i] = 0
                dir_add_count[i] = 0
                dir_add_pure_count[i] = 0
                dir_add_s_count[i] = 0
                dir_add_02_count[i] = 0
                dir_add_pure_02_count[i] = 0
                dir_add_s_02_count[i] = 0
                dir_dbd_count[i] = 0
                dir_drr_count[i] = 0
                dir_ada_count[i] = 0
                dir_distance_1_count[i] = 0

        logger.info('Dir {0} \'s total dis:{1} with {2} samples'.format(
            lastdatafolder, dir_dis / dir_count, dir_count))
        logger.info('Dir {0} \'s total add:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add / dir_count, dir_add_02 / dir_add))
        logger.info('Dir {0} \'s total add_s:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add_s / dir_count, dir_add_s_02 / dir_add_s))
        logger.info('Dir {0} \'s total add_pure:{1} with 0.02: {2}'.format(
            lastdatafolder, dir_add_pure / dir_count,
            dir_add_pure_02 / dir_add_pure))
        logger.info('Dir {0} \'s total dbd:{1}'.format(lastdatafolder,
                                                       dir_dbd / dir_count))
        logger.info('Dir {0} \'s total drr:{1}'.format(lastdatafolder,
                                                       dir_drr / dir_count))
        logger.info('Dir {0} \'s total ada:{1}'.format(lastdatafolder,
                                                       dir_ada / dir_count))
        logger.info('Dir {0} \'s total distance_1:{1}'.format(
            lastdatafolder, dir_distance_1 / dir_count))

        # end of handle dir output

        # handle global output
        total_unseen_count = 0
        total_without_pose_count = 0
        total_add_count_unseen_count = 0
        total_add_02_count_unseen_count = 0
        total_drr = 0.
        total_dbd = 0.
        total_ada = 0.
        total_distance_1 = 0.
        total_dis = 0.
        total_add = 0
        total_add_s = 0
        total_add_pure = 0
        total_add_02 = 0
        total_add_s_02 = 0
        total_add_pure_02 = 0
        total_count = 0
        for i in range(object_max):
            if total_test_count[i] != 0:
                logger.info(
                    'Total: Object {0} dis:{1} with {2} samples'.format(
                        i, total_test_dis[i] / total_test_count[i],
                        total_test_count[i]))
                logger.info('Total: Object {0} add:{1} with 0.02: {2}'.format(
                    i, total_add_count[i] / total_test_count[i],
                    total_add_02_count[i] / total_add_count[i]))
                logger.info('Total: Object {0} drr:{1}'.format(
                    i, total_drr_count[i] / total_test_count[i]))
                logger.info('Total: Object {0} ada:{1}'.format(
                    i, total_ada_count[i] / total_test_count[i]))
                logger.info('Total: Object {0} distance_1:{1}'.format(
                    i, total_distance_1_count[i] / total_test_count[i]))
                if total_unseen_objects[i] != 0:
                    if total_unseen_objects[i] - total_object_without_pose[
                            i] != 0:
                        logger.info(
                            'Total: Unseen Object {0} add:{1} with 0.02: {2} with {3} samples '
                            .format(
                                i, total_add_count_unseen[i] /
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i]),
                                total_add_02_count_unseen[i] /
                                total_add_count_unseen[i],
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i])))
                    logger.info(
                        'Total: Object {0} unseen :{1} times, {2} of them without poses, success rate:{3}'
                        .format(i, total_unseen_objects[i],
                                total_object_without_pose[i],
                                (total_unseen_objects[i] -
                                 total_object_without_pose[i]) /
                                total_unseen_objects[i]))

                total_unseen_count += total_unseen_objects[i]
                total_without_pose_count += total_object_without_pose[i]
                total_count += total_test_count[i]
                total_dis += total_test_dis[i]
                total_add += total_add_count[i]
                total_add_count_unseen_count += total_add_count_unseen[i]
                total_add_02_count_unseen_count += total_add_02_count_unseen[i]
                total_add_s += total_add_s_count[i]
                total_add_pure += total_add_pure_count[i]
                total_add_02 += total_add_02_count[i]
                total_add_s_02 += total_add_s_02_count[i]
                total_add_pure_02 += total_add_pure_02_count[i]
                total_dbd += total_dbd_count[i]
                total_drr += total_drr_count[i]
                total_ada += total_ada_count[i]
                total_distance_1 += total_distance_1_count[i]
        logger.info('total dis:{0} with {1} samples'.format(
            total_dis / total_count, total_count))
        logger.info('total add:{0} with 0.02: {1}'.format(
            total_add / total_count, total_add_02 / total_add))
        logger.info('total unseen add:{0} with 0.02: {1}'.format(
            total_add_count_unseen_count /
            (total_unseen_count - total_without_pose_count),
            total_add_02_count_unseen_count / total_add_count_unseen_count))
        logger.info('total add_pure:{0} with 0.02: {1}'.format(
            total_add_pure / total_count, total_add_pure_02 / total_add_pure))
        logger.info('total add_s:{0} with 0.02: {1}'.format(
            total_add_s / total_count, total_add_s_02 / total_add_s))
        logger.info(
            'detected unseen object :{0}, failed calculate {1} poses with success rate: {2}'
            .format(total_unseen_count, total_without_pose_count,
                    (total_unseen_count - total_without_pose_count) /
                    total_unseen_count))
        logger.info('Total drr:{0}'.format(total_drr / total_count))
        logger.info('Total ada:{0}'.format(total_ada / total_count))
        logger.info('Total distance_1:{0}'.format(total_distance_1 /
                                                  total_count))
Example #22
0
def main(args, cfg):
    # Set logger
    logger = setup_logger(args.mode,
                          cfg.DIRS.LOGS,
                          0,
                          filename=f"{cfg.EXP}.txt")

    # Declare variables
    best_metric = 0.
    start_cycle = 0
    start_epoch = 0

    # Define model
    if args.mode == "distil":
        student_model = build_sem_seg_model(cfg)
        teacher_model = build_sem_seg_model(cfg)
        optimizer = make_optimizer(cfg, student_model)
    else:
        model = build_sem_seg_model(cfg)
        if args.mode == "swa":
            swa_model = build_sem_seg_model(cfg)
        if cfg.DATA.AUGMENT == "augmix":
            from timm.models import convert_splitbn_model

            model = convert_splitbn_model(model, 3)
            swa_model = convert_splitbn_model(model, 3)
        optimizer = make_optimizer(cfg, model)

    # Define loss
    loss_name = cfg.LOSS.NAME
    if loss_name == "bce":
        train_criterion = nn.BCEWithLogitsLoss()
    elif loss_name == "focal":
        train_criterion = SigmoidFocalLoss(1.25, 0.25)
    elif loss_name == "dice":
        train_criterion = BinaryDiceLoss()
    elif loss_name == "iou":
        train_criterion = BinaryIoULoss()

    # CUDA & Mixed Precision
    if cfg.SYSTEM.CUDA:
        if args.mode == "distil":
            student_model = student_model.cuda()
            teacher_model = teacher_model.cuda()
        elif args.mode == "swa":
            model = model.cuda()
            swa_model = swa_model.cuda()
        else:
            model = model.cuda()
        train_criterion = train_criterion.cuda()

    if cfg.SYSTEM.FP16:
        bn_fp32 = True if cfg.SYSTEM.OPT_L == "O2" else None
        if args.mode == "distil":
            [student_model, teacher_model], optimizer = amp.initialize(
                models=[student_model, teacher_model],
                optimizers=optimizer,
                opt_level=cfg.SYSTEM.OPT_L,
                keep_batchnorm_fp32=bn_fp32)
        if args.mode == "swa":
            [model, swa_model
             ], optimizer = amp.initialize(models=[model, swa_model],
                                           optimizers=optimizer,
                                           opt_level=cfg.SYSTEM.OPT_L,
                                           keep_batchnorm_fp32=bn_fp32)
        else:
            model, optimizer = amp.initialize(models=model,
                                              optimizers=optimizer,
                                              opt_level=cfg.SYSTEM.OPT_L,
                                              keep_batchnorm_fp32=bn_fp32)

    # Load checkpoint
    if args.load != "":
        if os.path.isfile(args.load):
            logger.info(f"=> loading checkpoint {args.load}")
            ckpt = torch.load(args.load, "cpu")
            model.load_state_dict(ckpt.pop('state_dict'))
            if args.swa:
                swa_model.load_state_dict(model.state_dict())
            if not args.finetune:
                logger.info("resuming optimizer ...")
                optimizer.load_state_dict(ckpt.pop('optimizer'))
                if args.mode == "cycle":
                    start_cycle = ckpt["cycle"]
                start_epoch, best_metric = ckpt['epoch'], ckpt['best_metric']
            logger.info(
                f"=> loaded checkpoint '{args.load}' (epoch {ckpt['epoch']}, best_metric: {ckpt['best_metric']})"
            )
            if args.mode == "swa":
                ckpt = torch.load(args.load, "cpu")
                swa_model.load_state_dict(ckpt.pop('state_dict'))
        else:
            logger.info(f"=> no checkpoint found at '{args.load}'")

    if cfg.SYSTEM.MULTI_GPU:
        model = nn.DataParallel(model)

    # Load and split data
    train_loader = make_dataloader(cfg, "train")
    valid_loader = make_dataloader(cfg, "valid")

    scheduler = WarmupCyclicalLR("cos",
                                 cfg.OPT.BASE_LR,
                                 cfg.TRAIN.EPOCHS,
                                 iters_per_epoch=len(train_loader) //
                                 cfg.OPT.GD_STEPS,
                                 warmup_epochs=cfg.OPT.WARMUP_EPOCHS)

    if args.mode == "train":
        for epoch in range(start_epoch, cfg.TRAIN.EPOCHS):
            train_loop(logger.info, cfg, model, train_loader, train_criterion,
                       optimizer, scheduler, epoch)
            best_metric = valid_model(logger.info, cfg, model, valid_loader,
                                      optimizer, epoch, None, best_metric,
                                      True)
    elif args.mode == "cycle":
        for cycle in range(start_cycle, cfg.TRAIN.NUM_CYCLES):
            for epoch in range(start_epoch, cfg.TRAIN.EPOCHS):
                train_loop(logger.info, cfg, model, train_loader,
                           train_criterion, optimizer, scheduler, epoch)
                best_metric = valid_model(logger.info, cfg, model,
                                          valid_loader, optimizer, epoch,
                                          cycle, best_metric, True)
            # reset scheduler for new cycle
            scheduler = WarmupCyclicalLR("cos",
                                         cfg.OPT.BASE_LR,
                                         cfg.TRAIN.EPOCHS,
                                         iters_per_epoch=len(train_loader) //
                                         cfg.OPT.GD_STEPS,
                                         warmup_epochs=cfg.OPT.WARMUP_EPOCHS)
    elif args.mode == "distil":
        for epoch in range(start_epoch, cfg.TRAIN.EPOCHS):
            distil_train_loop(logger.info, cfg, student_model, teacher_model,
                              train_loader, train_criterion, optimizer,
                              scheduler, epoch)
            best_metric = valid_model(logger.info, cfg, student_model,
                                      valid_loader, optimizer, epoch, None,
                                      best_metric, True)
    elif args.mode == "swa":
        for epoch in range(start_epoch, cfg.TRAIN.EPOCHS):
            train_loop(logger.info, cfg, model, train_loader, train_criterion,
                       optimizer, scheduler, epoch)
            best_metric = valid_model(logger.info, cfg, model, valid_loader,
                                      optimizer, epoch, None, best_metric,
                                      True)
            if (epoch + 1) == cfg.OPT.SWA.START:
                copy_model(swa_model, model)
                swa_n = 0
            if ((epoch + 1) >= cfg.OPT.SWA.START) and ((epoch + 1) %
                                                       cfg.OPT.SWA.FREQ == 0):
                moving_average(swa_model, model, 1.0 / (swa_n + 1))
                swa_n += 1
                bn_update(train_loader, swa_model)
                best_metric = valid_model(logger.info, cfg, swa_model,
                                          valid_loader, optimizer, epoch, None,
                                          best_metric, True)

    elif args.mode == "valid":
        valid_model(logger.info, cfg, model, valid_loader, optimizer,
                    start_epoch)
    else:
        test_loader = make_dataloader(cfg, "test")
        predictions = test_model(logger.info, cfg, model, test_loader)
Example #23
0
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)
    # device_ids = [0,1]
    cudnn.benchmark = True
    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)

    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()
    # estimator = nn.DataParallel(estimator, device_ids=device_ids)

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        print('no refinement')
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        # optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, False,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
        # print(dataset.list)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    # print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    # criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf
    best_epoch = 0

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    count_gen = 0

    mode = 1

    if mode == 1:

        for epoch in range(opt.start_epoch, opt.nepoch):
            logger = setup_logger(
                'epoch%d' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
            logger.info('Train time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Training started'))
            train_count = 0
            train_dis_avg = 0.0
            if opt.refine_start:
                estimator.eval()
                refiner.train()
            else:
                estimator.train()
            optimizer.zero_grad()

            for rep in range(opt.repeat_epoch):
                for i, data in enumerate(dataloader, 0):
                    points, choose, img, target_sym, target_cen, idx, file_list_idx = data

                    if idx is 9 or idx is 16:
                        continue
                    # points, choose, img, target_sym, target_cen, target, idx, file_list_idx = data
                    # generate_obj_file(target_sym, target_cen, target, idx.squeeze())
                    # import pdb;pdb.set_trace()
                    points, choose, img, target_sym, target_cen, idx = Variable(points).cuda(), \
                    Variable(choose).cuda(), \
                    Variable(img).cuda(), \
                    Variable(target_sym).cuda(), \
                    Variable(target_cen).cuda(), \
                    Variable(idx).cuda()
                    # points, choose, img, target_sym, target_cen, idx = Variable(points), \
                    #                                                 Variable(choose), \
                    #                                                 Variable(img), \
                    #                                                 Variable(target_sym), \
                    #                                                 Variable(target_cen), \
                    #                                                 Variable(idx)
                    pred_norm, pred_on_plane, emb = estimator(
                        img, points, choose, idx)

                    # pred_norm_new = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

                    # for i in range(pred_norm.size(1)):
                    #     pred_norm_new[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
                    # if epoch % 10 == 0:
                    #     generate_obj_file_pred(pred_norm, pred_on_plane, points, count_gen, idx)
                    #     count_gen += 1
                    # print(pred_norm[0,0,:])

                    loss = criterion(pred_norm, pred_on_plane, target_sym,
                                     target_cen, idx, points, opt.w,
                                     opt.refine_start)

                    # scene_idx = dataset.list[file_list_idx]

                    loss.backward()

                    # train_dis_avg += dis.item()
                    train_count += 1

                    if train_count % opt.batch_size == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3}'.
                            format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size),
                                train_count))
                        optimizer.step()
                        # for param_lr in optimizer.module.param_groups:
                        #         param_lr['lr'] /= 2
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count % 5000 == 0:
                        print(pred_on_plane.max())
                        print(pred_on_plane.mean())

                    if train_count != 0 and train_count % 1000 == 0:
                        if opt.refine_start:
                            torch.save(
                                refiner.state_dict(),
                                '{0}/pose_refine_model_current.pth'.format(
                                    opt.outf))
                        else:
                            torch.save(
                                estimator.state_dict(),
                                '{0}/pose_model_current.pth'.format(opt.outf))

            print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.
                  format(epoch))

            logger = setup_logger(
                'epoch%d_test' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
            logger.info('Test time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Testing started'))
            test_loss = 0.0
            test_count = 0
            estimator.eval()
            # refiner.eval()

            # for rep in range(opt.repeat_epoch):
            #     for j, data in enumerate(testdataloader, 0):
            #         points, choose, img, target_sym, target_cen, idx, img_idx = data
            #         # points, choose, img, target, model_points, idx = Variable(points).cuda(), \
            #         #                                                  Variable(choose).cuda(), \
            #         #                                                  Variable(img).cuda(), \
            #         #                                                  Variable(target).cuda(), \
            #         #                                                  Variable(model_points).cuda(), \
            #         #                                                  Variable(idx).cuda()
            #         points, choose, img, target_sym, target_cen, idx = Variable(points), \
            #                                                             Variable(choose), \
            #                                                             Variable(img), \
            #                                                             Variable(target_sym), \
            #                                                             Variable(target_cen), \
            #                                                             Variable(idx)

            #         pred_norm, pred_on_plane, emb = estimator(img, points, choose, idx)
            #         loss = criterion(pred_norm, pred_on_plane, target_sym, target_cen, idx, points, opt.w, opt.refine_start)
            #         test_loss += loss

            #         logger.info('Test time {0} Test Frame No.{1}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count))

            #         test_count += 1

            # test_loss = test_loss / test_count
            logger.info(
                'Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), epoch,
                    test_loss))
            print(pred_on_plane.max())
            print(pred_on_plane.mean())
            bs, num_p, _ = pred_on_plane.size()
            # if epoch % 40 == 0:
            #     import pdb;pdb.set_trace()
            best_test = test_loss
            best_epoch = epoch
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

            if best_test < opt.decay_margin and not opt.decay_start:
                opt.decay_start = True
                opt.lr *= opt.lr_rate
                # opt.w *= opt.w_rate
                optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        estimator.load_state_dict(
            torch.load('{0}/pose_model_{1}_{2}.pth'.format(
                opt.outf, best_epoch, best_test)))
    else:
        estimator.load_state_dict(
            torch.load('{0}/pose_model_11_0.0.pth'.format(opt.outf)))

    product_list = []
    dist_list = []

    true_positives = 0
    false_positives = 0
    false_negatives = 0

    for index in range(len(test_dataset.list)):
        img = Image.open('{0}/data_v1/{1}-color.png'.format(
            test_dataset.root, test_dataset.list[index]))
        depth = np.array(
            Image.open('{0}/data_v1/{1}-depth.png'.format(
                test_dataset.root, test_dataset.list[index])))
        label = np.array(
            Image.open('{0}/data_v1/{1}-label.png'.format(
                test_dataset.root, test_dataset.list[index])))
        meta = scio.loadmat('{0}/data_v1/{1}-meta.mat'.format(
            test_dataset.root, test_dataset.list[index]))

        cam_cx = test_dataset.cam_cx_1
        cam_cy = test_dataset.cam_cy_1
        cam_fx = test_dataset.cam_fx_1
        cam_fy = test_dataset.cam_fy_1
        mask_back = ma.getmaskarray(ma.masked_equal(label, 0))

        obj = meta['cls_indexes'].flatten().astype(np.int32)
        for idx in range(0, len(obj)):
            print('object index: ', obj[idx])
            mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
            mask_label = ma.getmaskarray(ma.masked_equal(label, obj[idx]))
            mask = mask_label * mask_depth
            if not (len(mask.nonzero()[0]) > test_dataset.minimum_num_pt
                    and len(test_dataset.symmetry[obj[idx]]['mirror']) > 0):
                continue

            rmin, rmax, cmin, cmax = get_bbox(mask_label)
            img_temp = np.transpose(np.array(img)[:, :, :3],
                                    (2, 0, 1))[:, rmin:rmax, cmin:cmax]

            img_masked = img_temp
            target_r = meta['poses'][:, :, idx][:, 0:3]
            target_t = np.array(meta['poses'][:, :, idx][:, 3:4].flatten())
            add_t = np.array([
                random.uniform(-test_dataset.noise_trans,
                               test_dataset.noise_trans) for i in range(3)
            ])

            choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
            if len(choose) > test_dataset.num_pt:
                c_mask = np.zeros(len(choose), dtype=int)
                c_mask[:test_dataset.num_pt] = 1
                np.random.shuffle(c_mask)
                choose = choose[c_mask.nonzero()]
            else:
                choose = np.pad(choose, (0, test_dataset.num_pt - len(choose)),
                                'wrap')

            depth_masked = depth[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            xmap_masked = test_dataset.xmap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            ymap_masked = test_dataset.ymap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            choose = np.array([choose])

            cam_scale = meta['factor_depth'][0][0]
            pt2 = depth_masked / cam_scale
            pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx
            pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy
            cloud = np.concatenate((pt0, pt1, pt2), axis=1)

            dellist = [j for j in range(0, len(test_dataset.cld[obj[idx]]))]

            # dellist = random.sample(dellist, len(test_dataset.cld[obj[idx]]) - test_dataset.num_pt_mesh_small)
            # model_points = np.delete(test_dataset.cld[obj[idx]], dellist, axis=0)
            model_points = test_dataset.cld[obj[idx]]

            target_sym = []
            for sym in test_dataset.symmetry[obj[idx]]['mirror']:
                target_sym.append(np.dot(sym, target_r.T))
            target_sym = np.array(target_sym)

            target_cen = np.add(test_dataset.symmetry[obj[idx]]['center'],
                                target_t)

            target = np.dot(model_points, target_r.T)
            target = np.add(target, target_t)

            print('ground truth norm: ', target_sym)
            print('ground truth center: ', target_cen)
            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, target_ten, idx_ten = \
               torch.from_numpy(cloud.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor(choose.astype(np.int32)).unsqueeze(0), \
               test_dataset.norm(torch.from_numpy(img_masked.astype(np.float32))).unsqueeze(0), \
               torch.from_numpy(target_sym.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target_cen.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor([obj[idx]-1]).unsqueeze(0)

            # print(img_ten.size())
            # print(points_ten.size())
            # print(choose_ten.size())
            # print(idx_ten.size())

            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, idx_ten = Variable(points_ten).cuda(), \
                                                                Variable(choose_ten).cuda(), \
                                                                Variable(img_ten).cuda(), \
                                                                Variable(target_sym_ten).cuda(), \
                                                                Variable(target_cen_ten).cuda(), \
                                                                Variable(idx_ten).cuda()

            pred_norm, pred_on_plane, emb = estimator(img_ten, points_ten,
                                                      choose_ten, idx_ten)

            # import pdb;pdb.set_trace()

            bs, num_p, _ = pred_on_plane.size()

            # pred_norm = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

            # for i in range(pred_norm.size(1)):
            #     pred_norm[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
            # pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1))

            generate_obj_file_norm_pred(
                pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1)),
                pred_on_plane, points_ten,
                test_dataset.list[index].split('/')[0],
                test_dataset.list[index].split('/')[1], obj[idx])

            loss = criterion(pred_norm, pred_on_plane, target_sym_ten,
                             target_cen_ten, idx, points_ten, opt.w,
                             opt.refine_start)
            # print('test loss: ', loss)

            # bs, num_p, _ = pred_on_plane.size()
            pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(
                bs, num_p, 1))
            pred_norm = pred_norm.cpu().detach().numpy()
            pred_on_plane = pred_on_plane.cpu().detach().numpy()
            points = points_ten.cpu().detach().numpy()

            clustering_points_idx = np.where(
                pred_on_plane > pred_on_plane.max() * PRED_ON_PLANE_FACTOR +
                pred_on_plane.mean() * (1 - PRED_ON_PLANE_FACTOR))[1]
            clustering_norm = pred_norm[0, clustering_points_idx, :]
            clustering_points = points[0, clustering_points_idx, :]
            num_points = len(clustering_points_idx)

            # import pdb;pdb.set_trace()

            close_thresh = 5e-3
            broad_thresh = 7e-3

            sym_flag = [0 for i in range(target_sym.shape[0])]
            sym_max_product = [0.0 for i in range(target_sym.shape[0])]
            sym_dist = [0.0 for i in range(target_sym.shape[0])]

            count_pred = 0
            while True:
                if num_points == 0:
                    break
                count_pred += 1
                if count_pred > target_sym.shape[0]:
                    break
                best_fit_num = 0

                count_try = 0
                while True:
                    if count_try > 3 or num_points <= 1:
                        break

                    pick_idx = np.random.randint(0, num_points - 1)
                    pick_point = clustering_points[pick_idx]
                    # proposal_norm = np.array(Plane(Point3D(pick_points[0]),Point3D(pick_points[1]),Point3D(pick_points[2])).normal_vector).astype(np.float32)
                    proposal_norm = clustering_norm[pick_idx]
                    proposal_norm = proposal_norm[:, np.newaxis]

                    # import pdb;pdb.set_trace()
                    proposal_point = pick_point
                    # highest_pred_idx = np.argmax(pred_on_plane[0,clustering_points_idx,:])
                    # highest_pred_loc = clustering_points[highest_pred_idx]
                    # proposal_norm = clustering_norm[highest_pred_idx][:,np.newaxis]
                    clustering_diff = clustering_points - proposal_point
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, proposal_norm))

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    broad_inlier_num = len(broad_inliers)

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    close_inlier_num = len(close_inliers)

                    if broad_inlier_num > num_points / (5 - count_pred):
                        best_fit_num = close_inlier_num
                        best_fit_norm = proposal_norm
                        best_fit_cen = clustering_points[close_inliers].mean(0)
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        break
                    else:
                        count_try += 1
                    # else:
                    #     np.delete(clustering_points_idx, highest_pred_idx)
                    #     num_points -= 1

                if count_try > 3 or num_points <= 1:
                    break

                for i in range(2):

                    def f(x):
                        dist = 0
                        x = x / LA.norm(x)
                        for point in clustering_points[broad_inliers]:
                            dist += np.abs(point[0] * x[0] + point[1] * x[1] +
                                           point[2] * np.sqrt(1 - x[0] * x[0] -
                                                              x[1] * x[1]) +
                                           x[2])
                        return dist

                    start_point = np.copy(proposal_norm)
                    start_point[2] = (-proposal_point *
                                      proposal_norm[:, 0]).sum()

                    min_point = fmin(f, start_point)
                    new_pred_loc = np.array([
                        0, 0, -min_point[2] /
                        np.sqrt(1 - min_point[0] * min_point[0] -
                                min_point[1] * min_point[1])
                    ])

                    min_point[2] = np.sqrt(1 - min_point[0] * min_point[0] -
                                           min_point[1] * min_point[1])
                    new_proposal_norm = min_point
                    clustering_diff = clustering_points - new_pred_loc
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, new_proposal_norm))

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    new_close_inlier_num = len(close_inliers)

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    new_broad_inlier_num = len(broad_inliers)
                    # import pdb;pdb.set_trace()
                    if new_close_inlier_num > close_inlier_num:
                        best_fit_num = new_close_inlier_num
                        # proposal_point = clustering_points_idx[clustering_dist.argmin()]
                        proposal_point = new_pred_loc
                        best_fit_norm = new_proposal_norm[:, np.newaxis]
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        best_fit_cen = new_pred_loc
                        inlier_num = new_inlier_num
                        proposal_norm = best_fit_norm

                # other_idx_pick = other_idx[other_idx_pick]

                # if len(other_idx_pick) > num_points//6:
                #     pick_idx = np.concatenate((pick_idx, other_idx_pick), 0)
                #     norm_proposal_new = clustering_norm[pick_idx,:].mean(0)
                #     norm_proposal_new = norm_proposal_new / LA.norm(norm_proposal_new)
                #     inlier_num_new = len(np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh)[0])
                #     if inlier_num_new > inlier_num:
                #         best_fit_num = inlier_num_new
                #         best_fit_idx = np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh_scrap)
                #         best_fit_norm = norm_proposal_new
                #         best_fit_cen = clustering_points[best_fit_idx].mean(0)

                if best_fit_num == 0:
                    break
                else:
                    print('predicted norm:{}, predicted point:{}'.format(
                        best_fit_norm, best_fit_cen))

                    max_idx = np.argmax(np.matmul(target_sym, best_fit_norm))
                    sym_flag[max_idx] += 1
                    sym_product = np.abs((target_sym[max_idx] *
                                          (best_fit_cen - target_cen)).sum())
                    if sym_max_product[max_idx] < sym_product:
                        sym_max_product[max_idx] = sym_product
                        sym_dist[max_idx] = np.matmul(target_sym,
                                                      best_fit_norm)[max_idx]

                    # generate_obj_file_sym_pred(best_fit_norm, best_fit_cen, target_ten, test_dataset.list[index].split('/')[0], test_dataset.list[index].split('/')[1], obj[idx], count_pred)
                    # import pdb;pdb.set_trace()
                    clustering_points_idx = np.setdiff1d(
                        clustering_points_idx, scrub_idx)

                    clustering_norm = pred_norm[0, clustering_points_idx, :]
                    clustering_points = points[0, clustering_points_idx, :]
                    num_points = len(clustering_points_idx)

            for i in range(target_sym.shape[0]):
                if sym_flag[i] >= 1:
                    dist_list.append(sym_dist[i])
                    product_list.append(sym_max_product[i])
                    false_positives += sym_flag[i] - 1
                else:
                    false_negatives += 1

    product_list = np.array(product_list)
    dist_list = np.array(dist_list)
    # import pdb;pdb.set_trace()
    total_num = len(product_list)

    prec = []
    recall = []
    for t in range(1000):
        good_ones = len(
            np.logical_and(dist_list < 0.5 * t / 1000,
                           product_list > math.cos(math.pi * 0.25 * t / 1000)))

        prec.append(good_ones * 1.0 / (false_positives + total_num))
        recall.append(good_ones * 1.0 / (good_ones + false_negatives))

    print(prec)
    print(recall)
    plt.plot(recall, prec, 'r')
    plt.axis([0, 1, 0, 1])
    plt.savefig('prec-recall.png')
Example #24
0
                                                 opt.resume_model))
        model.load_state_dict(checkpoint)
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))

    optimizer = optim.Adam(model.parameters(), lr=opt.lr)
    criterion = Loss()
    best_val_cost = np.Inf
    st_time = time.time()

    for epoch in range(1, opt.n_epochs):
        model.train()
        train_all_cost = 0.0
        train_time = 0
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))

        for i, data in enumerate(dataloader, 0):
            rgb, target = data
            rgb, target = Variable(rgb).cuda(), Variable(target).cuda()
            semantic = model(rgb)
            optimizer.zero_grad()
            semantic_loss = criterion(semantic, target)
            train_all_cost += semantic_loss.item()
            semantic_loss.backward()
            optimizer.step()
            logger.info('Train time {0} Batch {1} CEloss {2}'.format(
Example #25
0
def main(args):
    this_dir = osp.join(osp.dirname(__file__), '.')

    ### make directory for each step size
    # '/dataset/volume1/users/yumin/result'
    #'/data/yumin/result'
    save_dir = osp.join(
        '/dataset/volume1/users/yumin/result',
        'delta_{}_checkpoints_method{}_noenc_smoothbeta0.5'.format(
            args.dataset, args.method))

    if not osp.isdir(save_dir):
        os.makedirs(save_dir)

    command = 'python ' + ' '.join(sys.argv)
    logger = utl.setup_logger(osp.join(this_dir, 'lstm_log.txt'),
                              command=command)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    utl.set_seed(int(args.seed))

    model = build_model(args)
    if osp.isfile(args.checkpoint):
        checkpoint = torch.load(args.checkpoint,
                                map_location=torch.device('cpu'))
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.apply(utl.weights_init)
    if args.distributed:  ### !!!
        model = nn.DataParallel(model)
    model = model.to(device)

    if args.dataset == 'THUMOS':
        criterion1 = utl.MultiCrossEntropyLoss_Delta(
            num_class=args.num_classes,
            dirichlet=args.dirichlet,
            ignore_index=21).to(device)
        # criterion2 = nn.MSELoss()
        # criterion2 = nn.L1Loss()
        criterion2 = nn.SmoothL1Loss()
        # criterion2 = nn.HuberLoss()

    elif args.dataset == "TVSeries":
        criterion = utl.MultiCrossEntropyLoss_Delta(
            num_class=args.num_classes, dirichlet=args.dirichlet).to(device)

    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.weight_decay)
    if osp.isfile(args.checkpoint):
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        for param_group in optimizer.param_groups:
            param_group['lr'] = args.lr
        args.start_epoch += checkpoint['epoch']

    softmax = nn.Softmax(dim=1).to(device)

    for epoch in range(args.start_epoch, args.start_epoch + args.epochs):
        if epoch == 21:
            args.lr = args.lr * 0.1
            for param_group in optimizer.param_groups:
                param_group['lr'] = args.lr

        data_loaders = {
            phase: utl.build_data_loader(args, phase)
            for phase in args.phases
        }

        enc_losses = {phase: 0.0 for phase in args.phases}
        enc_score_metrics = []
        enc_target_metrics = []
        delta_score_metrics = []
        delta_target_metrics = []
        enc_mAP = 0.0
        delta_mAP = 0.0

        start = time.time()
        for phase in args.phases:
            training = phase == 'train'
            if training:
                model.train(True)
            elif not training and args.debug:
                model.train(False)
            else:
                continue

            with torch.set_grad_enabled(training):
                for batch_idx, (camera_inputs, motion_inputs, enc_target, smooth_target) \
                        in enumerate(data_loaders[phase], start=1):

                    batch_size = camera_inputs.shape[0]
                    camera_inputs = camera_inputs.to(device)
                    motion_inputs = motion_inputs.to(device)

                    extend_target = enc_target.to(device)
                    enc_target = enc_target.to(device).view(
                        -1, args.num_classes)
                    smooth_target = smooth_target.to(device)
                    oad_score, delta_score = model(camera_inputs,
                                                   motion_inputs)

                    oad_before = oad_score.clone().detach()
                    oad_before = oad_before[:, 1::, :]

                    ## have to make delta target and compute delta loss

                    new_target = smooth_target[:, 1::, :] - oad_before
                    # print('***** DELTA TARGET')
                    # print(new_target)
                    # print('***** DELTA SCORE')
                    # print(delta_score[:,1::,:])

                    oad_loss = criterion1(oad_score, extend_target)
                    delta_loss = criterion2(delta_score[:, 1::, :],
                                            new_target)  # ignore the first
                    # delta_loss = criterion2(delta_score[:,1::,:], extend_target[:,1::,:])   # without labelsmoothing

                    enc_losses[phase] += oad_loss.item() * batch_size

                    if args.verbose:
                        print(
                            'Epoch: {:2} | iteration: {:3} | enc_loss: {:.5f} | delta_loss: {:.5f}'
                            .format(epoch, batch_idx, oad_loss.item(),
                                    delta_loss.item() * 10))

                    if training:
                        optimizer.zero_grad()
                        loss = oad_loss + delta_loss * 10
                        loss.backward()
                        optimizer.step()
                    else:
                        # Prepare metrics for encoder
                        enc_score = oad_score.cpu().numpy()  ## softmax check
                        enc_target = extend_target.cpu().numpy()
                        enc_score_metrics.extend(enc_score)
                        enc_target_metrics.extend(enc_target)
                        delta_score_c = delta_score[:, 1::, :].reshape(
                            -1, args.num_classes)
                        delta = delta_score_c.cpu().numpy()
                        new_target_c = new_target.reshape(-1, args.num_classes)
                        delta_target = new_target_c.cpu().numpy()
                        delta_score_metrics.extend(delta)
                        delta_target_metrics.extend(delta_target)

        end = time.time()

        if args.debug:
            if epoch % 1 == 0:
                result_file = osp.join(
                    this_dir,
                    'delta-inputs-{}-epoch-{}.json'.format(args.inputs, epoch))
                # Compute result for encoder
                enc_mAP = utl.compute_result_multilabel(
                    args.dataset,
                    args.class_index,
                    enc_score_metrics,
                    enc_target_metrics,
                    save_dir,
                    result_file,
                    ignore_class=[0, 21],
                    save=True,
                )

                delta_mAP = utl.compute_result_multilabel(
                    args.dataset,
                    args.class_index,
                    delta_score_metrics,
                    delta_target_metrics,
                    save_dir,
                    result_file,
                    ignore_class=[0, 21],
                    save=True,
                    smooth=True,
                )

        # Output result
        logger.delta_output(epoch,
                            enc_losses,
                            len(data_loaders['train'].dataset),
                            len(data_loaders['test'].dataset),
                            enc_mAP,
                            delta_mAP,
                            end - start,
                            debug=args.debug)

        # Save model
        checkpoint_file = 'delta-inputs-{}-epoch-{}.pth'.format(
            args.inputs, epoch)
        torch.save(
            {
                'epoch':
                epoch,
                'model_state_dict':
                model.module.state_dict()
                if args.distributed else model.state_dict(),
                'optimizer_state_dict':
                optimizer.state_dict(),
            }, osp.join(save_dir, checkpoint_file))
Example #26
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21
    opt.num_points = 1000
    opt.outf = 'trained_models/ycb/' + opt.output_dir
    opt.log_dir = 'experiments/logs/ycb/' + opt.output_dir
    opt.train_dir = 'experiments/tb/ycb/' + opt.output_dir + '/train'
    opt.test_dir = 'experiments/tb/ycb/' + opt.output_dir + '/test'
    opt.repeat_epoch = 1
    if not os.path.exists(opt.outf): os.makedirs(opt.outf, exist_ok=True)
    if not os.path.exists(opt.log_dir): os.makedirs(opt.log_dir, exist_ok=True)
    if not os.path.exists(opt.train_dir):
        os.makedirs(opt.train_dir, exist_ok=True)
    if not os.path.exists(opt.test_dir):
        os.makedirs(opt.test_dir, exist_ok=True)

    opt.repeat_epoch = 1

    estimator = PoseNet(num_points=opt.num_points,
                        num_obj=opt.num_objects,
                        object_max=opt.object_max)
    estimator.cuda()

    isFirstInitLastDatafolder = True

    if opt.resume_posenet != '':
        psp_estimator = torch.load(
            'trained_models/ycb/pose_model_26_0.012863246640872631.pth')
        pretrained_estimator = torch.load('{0}/{1}'.format(
            opt.outf, opt.resume_posenet))
        estimator_dict = estimator.state_dict()

        psp_dict = {
            k: v
            for k, v in psp_estimator.items() if k.find('cnn.model') == 0
        }
        pretrained_dict = {
            k: v
            for k, v in pretrained_estimator.items()
            if k.find('cnn.model') != 0
        }

        estimator_dict.update(psp_dict)
        estimator_dict.update(pretrained_dict)
        estimator.load_state_dict(estimator_dict)
    else:
        psp_estimator = torch.load(
            'trained_models/ycb/pose_model_26_0.012863246640872631.pth')
        psp_dict = {
            k: v
            for k, v in psp_estimator.items() if k.find('cnn.model') == 0
        }
        estimator_dict = estimator.state_dict()

        estimator_dict.update(psp_dict)
        estimator.load_state_dict(estimator_dict)

    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset_ycb('train', opt.num_points, False, opt.dataset_root,
                              opt.noise_trans, 'ori', False)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             shuffle=False,
                                             num_workers=opt.workers)
    test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                   opt.dataset_root, 0.0, 'ori', False)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)

    dis_vector_last_map = {key: [] for key in range(0, opt.num_objects)}
    for i in range(0, opt.num_objects):
        dis_vector_last_map[i] = None

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        global_train_dis = 0.0

        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                list_full_img, list_focal_length, list_principal_point, list_motion = data

                for list_index in range(len(list_points)):
                    if opt.dataset == 'ycb':
                        points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point \
                            , motion = list_points[list_index], list_choose[list_index], list_img[list_index], \
                                       list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                                       list_filename[list_index], list_full_img[list_index], list_focal_length[
                                           list_index], \
                                       list_principal_point[list_index], list_motion[list_index]
                        datafolder = filename[0].split('/')[1]
                        if isFirstInitLastDatafolder:
                            lastdatafolder = datafolder
                            isFirstInitLastDatafolder = False
                        if datafolder != lastdatafolder:
                            for i in range(0, opt.num_objects):
                                dis_vector_last_map[i] = None

                            optimizer.step()
                            optimizer.zero_grad()
                            train_dis_avg = 0
                            estimator.temporalClear(opt.object_max,
                                                    opt.mem_length)
                        lastdatafolder = datafolder
                    elif opt.dataset == 'linemod':
                        list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename = data
                        points, choose, img, target, model_points, idx, filename = list_points[
                            0]

                    points, choose, img, target, model_points, idx = points.cuda(), \
                                                                     choose.cuda(), \
                                                                     img.cuda(), \
                                                                     target.cuda(), \
                                                                     model_points.cuda(), \
                                                                     idx.cuda()

                    pred_r, pred_t, pred_c, x_return = estimator(
                        img, points, choose, idx, focal_length,
                        principal_point, motion, True)
                    loss, dis, new_points, new_target, dis_vector = criterion(
                        pred_r, pred_t, pred_c,
                        dis_vector_last_map[idx.item()], target, model_points,
                        idx, x_return, opt.w, False,
                        float(opt.loss_stable_alpha))
                    dis_vector_last_map[idx.item()] = dis_vector
                    loss.backward(retain_graph=True)

                    logger.info(
                        'Train time {0} Frame {1} Object {2}, Loss = {3}'.
                        format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            filename, idx.item(), dis))
                    train_dis_avg += dis.item()
                    global_train_dis += dis.item()
                    train_count += 1
                    if train_count % (len(list_points) * opt.batch_size) == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                            .format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size), train_count,
                                train_dis_avg /
                                (len(list_points) * opt.batch_size)))
                        optimizer.step()
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count != 0 and train_count % 1000 == 0:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))
        global_train_dis = 0.0

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()

        for i in range(0, opt.num_objects):
            dis_vector_last_map[i] = None

        with torch.no_grad():
            isFirstInitLastDatafolder = True
            for j, data in enumerate(testdataloader, 0):
                if opt.dataset == 'ycb':
                    list_points, list_choose, list_img, list_target, list_model_points, list_idx, list_filename, \
                    list_full_img, list_focal_length, list_principal_point, list_motion = data
                for list_index in range(len(list_points)):
                    points, choose, img, target, model_points, idx, filename, full_img, focal_length, principal_point, motion \
                        = list_points[list_index], list_choose[list_index], list_img[list_index], \
                          list_target[list_index], list_model_points[list_index], list_idx[list_index], \
                          list_filename[list_index], list_full_img[list_index], list_focal_length[list_index], \
                          list_principal_point[list_index], list_motion[list_index]
                    datafolder = filename[0].split('/')[1]
                    filehead = filename[0].split('/')[2]
                    if isFirstInitLastDatafolder:
                        lastdatafolder = datafolder
                        isFirstInitLastDatafolder = False
                    if datafolder != lastdatafolder:
                        train_dis_avg = 0
                        estimator.temporalClear(opt.object_max)
                    lastdatafolder = datafolder
                    points, choose, img, target, model_points, idx = points.cuda(), \
                                                                     choose.cuda(), \
                                                                     img.cuda(), \
                                                                     target.cuda(), \
                                                                     model_points.cuda(), \
                                                                     idx.cuda()
                    cloud_path = "experiments/clouds/ycb/{0}/{1}/{2}/{3}_{4}".format(
                        opt.output_dir, epoch, datafolder, filehead,
                        int(idx))  # folder to save logs
                    if not os.path.exists(
                            "experiments/clouds/ycb/{0}/{1}/{2}".format(
                                opt.output_dir, epoch, datafolder)):
                        os.makedirs(
                            "experiments/clouds/ycb/{0}/{1}/{2}".format(
                                opt.output_dir, epoch, datafolder),
                            exist_ok=True)
                    pred_r, pred_t, pred_c, x_return = estimator(
                        img, points, choose, idx, focal_length,
                        principal_point, motion, cloud_path)

                    _, dis, new_points, new_target, dis_vector = criterion(
                        pred_r, pred_t, pred_c,
                        dis_vector_last_map[idx.item()], target, model_points,
                        idx, x_return, opt.w, opt.refine_start,
                        float(opt.loss_stable_alpha))

                    dis_vector_last_map[idx.item()] = dis_vector

                    test_dis += dis.item()
                    logger.info(
                        'Test time {0} Test Frame No.{1} {2} {3} dis:{4}'.
                        format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            test_count, filename, idx.item(), dis))
                    test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%d %Hh %Mm %Ss",
                          time.gmtime(time.time() - st_time)), epoch,
            test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_ori_{1}_{2}.pth'.format(
                    opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
Example #27
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 3
    opt.num_points = 500
    opt.outf = 'trained_models'
    opt.log_dir = 'experiments/logs'
    opt.repeat_epoch = 20

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    dataset = PoseDataset('train', opt.num_points, True, opt.dataset_root,
                          opt.noise_trans, opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)

    test_dataset = PoseDataset('test', opt.num_points, False, opt.dataset_root,
                               0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()  # affects dropout and batch normalization
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                #points        ->torch.Size([500, 3])  ->在crop出来的像素区域随机选取500个点,利用相机内参结合深度值算出来的点云cloud
                #choose        ->torch.Size([1, 500])
                #img           ->torch.Size([3, 80, 80])
                #target        ->torch.Size([500, 3])  ->真实模型上随机选取的mesh点进行ground truth pose变换后得到的点
                #model_points  ->torch.Size([500, 3])  ->真实模型上随机选取的mesh点在进行pose变换前的点
                #idx           ->torch.Size([1])
                #tensor([4], device='cuda:0')
                #img和points对应rgb和点云信息,需要在网络内部fusion
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            dataset = PoseDataset('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            test_dataset = PoseDataset('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)