def response(flow): url = flow.request.url orig_path = get_path(url, origdir) orig_dir_path = os.path.dirname(orig_path) if not os.path.exists(orig_dir_path): os.makedirs(orig_dir_path) with open(orig_path, 'wb') as fp: fp.write(flow.response.content) mod_path = get_path(url, moddir) if os.path.exists(mod_path): # rewrite response with open(mod_path, 'rb') as fp: flow.response.content = fp.read()
def poor_log(msg, *args): from time import strftime from lib import get_path timestamp = strftime("%Y-%m-%d %H:%M:%S") log_file = get_path('log') with open(log_file, 'a+b', 0) as f: format = "[%s]" % timestamp + msg + "\n" f.write(format % args)
def edit(url): origpath = get_path(url, origdir) modpath = get_path(url, moddir) editor = os.getenv('EDITOR', 'vim') cp_ts = None if not os.path.exists(modpath) and os.path.exists(origpath): modpath_dir = os.path.dirname(modpath) if not os.path.exists(modpath_dir): os.makedirs(modpath_dir) shutil.copyfile(origpath, modpath) cp_ts = get_ts(modpath) ret = subprocess.call([editor, modpath]) # delete if no changes on copied file if cp_ts and cp_ts == get_ts(modpath): logger.info('no changes on {}'.format(modpath)) os.remove(modpath)
def __init__(self, proj_path, cfg, network = None): self._cfg = cfg self._root_path = proj_path self.net = network # self.output_dir = output_dir pretrained_model_path = os.path.join(self._root_path, cfg.COMMON.DATA_PATH, cfg.TRAIN.PRETRAIN) pretrained_model = os.listdir(pretrained_model_path) assert len(pretrained_model) == 1, 'pretrain model should be one' self._pretrain = os.path.join(pretrained_model_path, pretrained_model[0]) self._ckpt_path = get_path(os.path.join(self._root_path, cfg.COMMON.DATA_PATH, cfg.TRAIN.CKPT)) self._restore = cfg.TRAIN.RESTORE self._max_iter = cfg.TRAIN.MAX_ITER
if __name__ == '__main__': # print(os.getcwd()) cfg = load_config() print('Using config:') # pprint.pprint(cfg) """ @params use_cache 是否从重新进行data_process过程,一般dataset/for_train文件发生变化需要进行 """ roidb = get_training_roidb(cfg) # 返回roidb roidb就是我们需要的对象实例 # output_dir = get_path('dataset/output') # log_dir = get_path('dataset/log') checkpoints_dir = get_path(cfg.COMMON.CKPT) # print('Output will be saved to {:s}'.format(output_dir)) # print('Logs will be saved to {:s}'.format(log_dir)) # """ # @params # network ctpn_network 实例 # roidb roi 列表 # output_dir tensorflow输出的 绝对路径 要拼接本地机器所在的运行目录 # log_dir 日志输出 绝对路径 # max_iter 训练轮数 # pretrain_model 预训练VGG16模型 绝对路径 # restore bool值 是否从checkpoints断点开始恢复上次中断的训练 # """ vgg16_net_param = '../dataset/pretrain/VGG_imagenet.npy'
total_rows += sheet.max_row keys = {} for j, row in enumerate(sheet.rows): if j > 0: break for k, cell in enumerate(row): # Проверяем, чтобы был СНИЛС и Код if cell.value in IN_SNILS: keys[IN_SNILS[0]] = k if len(keys) < 1: print('В файле "' + sys.argv[i + 1] + '" отсутствует колонка со СНИЛС') time.sleep(3) sys.exit() sheets_keys.append(keys) path = get_path(sys.argv[1]) print('\n' + datetime.now().strftime("%H:%M:%S") + ' Начинаем преобразование и нарезку xlsx файлов \n') k = 1 # Счетчик строк в csv file_number = 1 cl_csvs = [] for i, sheet in enumerate( sheets): # Загружаем все xlsx файлы по мере сохранения в БД for j, row in enumerate(sheet.rows): # Теперь строки if j == 0: continue cl_csv = {} if lenl(row[keys[IN_SNILS[0]]].value ) < 12: # and l(row[keys[IN_SNILS[0]]].value) > 100:
from ctpn.train_net import train_net from lib.load_config import load_config from data_process.roidb import get_training_roidb from lib import get_path if __name__ == '__main__': cfg = load_config() print('Using config:') pprint.pprint(cfg) """ @params use_cache 是否从重新进行data_process过程,一般dataset/for_train文件发生变化需要进行 """ roidb = get_training_roidb(cfg) # 返回roidb roidb就是我们需要的对象实例 output_dir = get_path('dataset/output') log_dir = get_path('dataset/log') checkpoints_dir = get_path(cfg.COMMON.CKPT) print('Output will be saved to {:s}'.format(output_dir)) print('Logs will be saved to {:s}'.format(log_dir)) # """ # @params # network ctpn_network 实例 # roidb roi 列表 # output_dir tensorflow输出的 绝对路径 要拼接本地机器所在的运行目录 # log_dir 日志输出 绝对路径 # max_iter 训练轮数 # pretrain_model 预训练VGG16模型 绝对路径