Example #1
0
File: run.py Project: jwgu/PyRNN
def train(eta, iters):
    for it in xrange(iters):
        i = random.randint(0, len(text)/seq_len)
        j = i * seq_len

        X = text[j:(j+seq_len)]
        Y = text[(j+1):(j+1+seq_len)]

        print "iteration: %s, cost: %s" % (str(it), str(rnn.train(one_hot(X), one_hot(Y), eta, 1.0)))
Example #2
0
def train(eta, iters):
    for it in xrange(iters):
        i = random.randint(0, len(text) / seq_len)
        j = i * seq_len

        X = text[j:(j + seq_len)]
        Y = text[(j + 1):(j + 1 + seq_len)]

        print "iteration: %s, cost: %s" % (
            str(it), str(rnn.train(one_hot(X), one_hot(Y), eta, 1.0)))
Example #3
0
def non_personalized_train(dnodex, eta, iters, ntusers):
    for it in xrange(iters):
        i = random.randint(0,len(dnodex.plist)-1)
        while len(dnodex.plist[i])<=2 or i in dnodex.test_track:
            i=random.randint(0,len(dnodex.plist)-1)
        X = dnodex.plist[i][:-1]
        Y = dnodex.plist[i][1:]
        lossf=str(rnn.train(one_hot(X,len(format(dnodex.npoi,'b'))), one_hot(Y,len(format(dnodex.npoi,'b'))), eta, 1.0))
        if it%500==0:
            print "iteration: %s, cost: %s" % (str(it), lossf)
Example #4
0
def infer_stochastic(rnn, k, temperature, start_char=" "):
    x = [one_hot(start_char).flatten()]

    for i in xrange(k):
        probs = rnn.predict_char(x, temperature)
        p = np.asarray(probs[0], dtype="float64")
        p /= p.sum()
        sample = np.random.multinomial(1, p)
        sys.stdout.write(one_hot_to_string(sample))
        x = [sample]

    rnn.reset_state()
Example #5
0
File: run.py Project: jwgu/PyRNN
def infer_stochastic(rnn, k, temperature, start_char=" "):
    x = [one_hot(start_char).flatten()]

    for i in xrange(k):
        probs = rnn.predict_char(x, temperature)
        p = np.asarray(probs[0], dtype="float64")
        p /= p.sum()
        sample = np.random.multinomial(1, p)
        sys.stdout.write(one_hot_to_string(sample))
        x = [sample]

    rnn.reset_state()
Example #6
0
def infer_stochastic(dnodex, rnn):
    precision=0
    test_case=0.0000001
    for test_index in dnodex.test_track:
        test=dnodex.plist[test_index]
        if test_index%100==0:
            sys.stdout.write('\r%d prediction finished, current precision: %4f,%f,%f...' % (test_index,precision/test_case, precision, test_case))
            sys.stdout.flush()
        if test_index>=500:
            break
        if len(test)==1:
            continue
        for index in range(len(test)-1):
            x = [one_hot([test[index]],len(format(dnodex.npoi,'b'))).flatten()]
            probs = rnn.predict_char(x, 1)
            p = np.asarray(probs[0], dtype="float64")
            p /= p.sum()
            sample = np.random.multinomial(len(p), p)
            res=one_hot_to_string(sample)
            if res==test[index+1]:
                precision+=1.0
            test_case+=1.0
            rnn.reset_state()
    print 'Precision: ', precision/test_case