Example #1
0
def test_neighborhood():
    # pt_num=np.random.randint(20000,50000)
    pt_num=10240
    pts=np.random.uniform(0,1,[pt_num,3])
    pts=np.asarray(pts,dtype=np.float32)

    idxs=np.random.choice(pt_num,100,False)
    idxs=np.asarray(idxs,np.int32)
    for i in xrange(10000):
        nidxs=libPointUtil.findNeighborRadiusGPU(pts,idxs,0.1,30)
def point2ndixs(pts, radius):
    leafsize = 10 if pts.shape[0] > 100 else 1
    if pts.shape[0] > 8000:
        nidxs = libPointUtil.findNeighborRadiusGPU(pts, radius, leafsize)
    else:
        nidxs = libPointUtil.findNeighborRadiusCPU(pts, radius, leafsize)
    nidxs_lens = [len(nidx) for nidx in nidxs]
    nidxs_lens = np.asarray(nidxs_lens, dtype=np.int32)
    nidxs = np.concatenate(nidxs, axis=0)

    nidxs_bgs = compute_nidxs_bgs(nidxs_lens)
    cindxs = compute_cidxs(nidxs_lens)

    return nidxs, nidxs_lens, nidxs_bgs, cindxs
Example #3
0
def test_concat_non_center():
    import libPointUtil
    pts=np.random.uniform(-1.0,1.0,[20,3])
    pts=np.asarray(pts,dtype=np.float32)
    nidxs=libPointUtil.findNeighborRadiusGPU(pts,1.0)
    nidxs_lens=np.asarray([len(idxs) for idxs in nidxs],dtype=np.int32)
    nidxs_bgs=compute_nidxs_bgs(nidxs_lens)
    nidxs=np.concatenate(nidxs,axis=0)
    nidxs=np.asarray(nidxs,dtype=np.int32)

    pts=np.asarray(pts,np.float64)
    ofeats=np_concat_non_center_forward(pts,nidxs,nidxs_lens,nidxs_bgs)
    dofeats=np.random.uniform(-1,1,ofeats.shape)
    difeats=np_concat_non_center_backward(dofeats,nidxs,nidxs_lens,nidxs_bgs)

    f=lambda ifeats: np_concat_non_center_forward(ifeats,nidxs,nidxs_lens,nidxs_bgs)
    difeats_num=eval_numerical_gradient_array(f,pts,dofeats)

    print pts
    print ofeats

    print 'diff {} '.format(np.max(difeats-difeats_num))
def tesst_concat_non_center_scatter():
    pts = np.random.uniform(-1.0, 1.0, [20, 3])
    pts = np.asarray(pts, dtype=np.float32)
    nidxs = libPointUtil.findNeighborRadiusGPU(pts, 1.0)
    nidxs_lens = np.asarray([len(idxs) for idxs in nidxs], dtype=np.int32)
    nidxs_bgs = compute_nidxs_bgs(nidxs_lens)
    nidxs = np.concatenate(nidxs, axis=0)
    nidxs = np.asarray(nidxs, dtype=np.int32)

    pts = np.asarray(pts, np.float64)
    ofeats = np_concat_non_center_forward(pts, nidxs, nidxs_lens, nidxs_bgs)
    dofeats = np.random.uniform(-1, 1, ofeats.shape)
    difeats = np_concat_non_center_backward(dofeats, nidxs, nidxs_lens,
                                            nidxs_bgs)

    ifeats = np.ascontiguousarray(pts, np.float32)
    dofeats = np.ascontiguousarray(dofeats, np.float32)
    ofeats_tf, difeats_tf = eval_concat_non_center_forward(
        ifeats, nidxs, nidxs_lens, nidxs_bgs, dofeats)

    print 'forward diff {}'.format(np.max(ofeats_tf - ofeats))
    print 'backward diff {}'.format(np.max(np.abs(difeats_tf - difeats)))
    print np.mean(difeats_tf)
Example #5
0
def test_covars():
    pts, _ = read_room_h5('data/S3DIS/room/16_Area_1_office_15.h5')

    ds_idxs, _ = libPointUtil.gridDownsampleGPU(pts, 0.05, True)
    pts = pts[ds_idxs, :]

    spts = np.ascontiguousarray(pts[:, :3])
    nidxs = libPointUtil.findNeighborRadiusGPU(spts, 0.2)
    nidxs_lens = np.asarray([len(idxs) for idxs in nidxs], dtype=np.int32)
    nidxs_bgs = compute_nidxs_bgs(nidxs_lens)
    nidxs = np.concatenate(nidxs, axis=0)

    begin = time.time()
    for i in xrange(10000):
        covars = libPointUtil.computeCovarsGPU(spts, nidxs, nidxs_lens,
                                               nidxs_bgs)
    print 'cost {} s'.format(time.time() - begin)

    from sklearn.cluster import KMeans
    kmeans = KMeans(5)
    preds = kmeans.fit_predict(covars)
    colors = np.random.randint(0, 255, [5, 3])
    output_points('test_result/cluster.txt', pts, colors[preds, :])
def sample_block_scannet(points,
                         labels,
                         ds_stride,
                         block_size,
                         block_stride,
                         min_pn,
                         use_rescale=False,
                         use_flip=False,
                         use_rotate=False,
                         covar_nn_size=0.1):
    xyzs = np.ascontiguousarray(points[:, :3])
    min_xyzs = np.min(xyzs, axis=0, keepdims=True)
    max_xyzs = np.max(xyzs, axis=0, keepdims=True)

    # flip
    if use_flip:
        if random.random() < 0.5:
            xyzs = swap_xy(xyzs)
            min_xyzs = swap_xy(min_xyzs)
            max_xyzs = swap_xy(max_xyzs)

        if random.random() < 0.5:
            xyzs = flip(xyzs, axis=0)
            min_xyzs[:, 0], max_xyzs[:, 0] = -max_xyzs[:, 0], -min_xyzs[:, 0]

        if random.random() < 0.5:
            xyzs = flip(xyzs, axis=1)
            min_xyzs[:, 1], max_xyzs[:, 1] = -max_xyzs[:, 1], -min_xyzs[:, 1]

    # rescale
    if use_rescale:
        rescale = np.random.uniform(0.9, 1.1, [1, 3])
        xyzs[:, :3] *= rescale
        min_xyzs *= rescale
        max_xyzs *= rescale

    # rotate
    if use_rotate:
        if random.random() > 0.3:
            angle = random.random() * np.pi / 2.0
            xyzs = rotate(xyzs, angle)
            min_xyzs = np.min(xyzs, axis=0, keepdims=True)
            max_xyzs = np.max(xyzs, axis=0, keepdims=True)

    ds_idxs = libPointUtil.gridDownsampleGPU(xyzs, ds_stride, False)

    covar_nidxs = libPointUtil.findNeighborRadiusGPU(xyzs, ds_idxs,
                                                     covar_nn_size)

    covar_nidxs_lens = np.ascontiguousarray(
        [len(idxs) for idxs in covar_nidxs], np.int32)
    covar_nidxs_bgs = compute_nidxs_bgs(covar_nidxs_lens)
    covar_nidxs = np.ascontiguousarray(np.concatenate(covar_nidxs, axis=0),
                                       dtype=np.int32)

    covars = libPointUtil.computeCovarsGPU(xyzs, covar_nidxs, covar_nidxs_lens,
                                           covar_nidxs_bgs)

    xyzs = xyzs[ds_idxs, :]
    lbls = labels[ds_idxs]

    xyzs -= min_xyzs
    idxs = uniform_sample_block(xyzs,
                                block_size,
                                block_stride,
                                normalized=True,
                                min_pn=min_pn)
    xyzs += min_xyzs
    xyzs, covars, lbls = fetch_subset([xyzs, covars, lbls], idxs)

    return xyzs, covars, lbls
Example #7
0
    return vals


if __name__ == "__main__":
    pts,_=read_room_h5('data/S3DIS/room/16_Area_1_office_15.h5')

    ds_idxs,_=libPointUtil.gridDownsampleGPU(pts,0.05,True)
    pts=pts[ds_idxs,:]
    block_idxs=libPointUtil.sampleRotatedBlockGPU(pts,1.5,3.0,0.0)
    block_idxs=[idxs for idxs in block_idxs if len(idxs)>2048]
    print 'mean block pt_num: {}'.format(np.mean(np.asarray([len(idxs) for idxs in block_idxs])))
    bid=np.random.randint(0,len(block_idxs))
    pts=pts[block_idxs[bid],:]

    spts=np.ascontiguousarray(pts[:,:3])
    nidxs=libPointUtil.findNeighborRadiusGPU(spts,0.08)
    nidxs_lens=np.asarray([len(idxs) for idxs in nidxs],dtype=np.int32)
    nidxs_bgs=compute_nidxs_bgs(nidxs_lens)
    cidxs=compute_cidxs(nidxs_lens)
    nidxs=np.concatenate(nidxs,axis=0)
    print 'pn*n: {}'.format(nidxs.shape)
    print 'pn: {}'.format(nidxs_bgs.shape)
    print 'avg n: {}'.format(float(nidxs.shape[0])/nidxs_bgs.shape[0])

    pmiu=neighbor_anchors()
    pmiu=pmiu.transpose()
    print 'pmiu {}'.format(pmiu.shape)

    dpfeats=np.random.uniform(-1.0,1.0,[pts.shape[0],final_dims])
    dpfeats=np.asarray(dpfeats,dtype=np.float32)
    vals=eval_conv_xyz_feats(pts[:,:3],pts[:,3:],nidxs,nidxs_lens,nidxs_bgs,pmiu,dpfeats,cidxs)