array_train_X_ss.append(np.array(X_train_ss))
    array_test_X_ss.append(np.array(X_test_ss))
    array_train_y_ss.append(np.array(y_train_ss))
    array_test_y_ss.append(np.array(y_test_ss))

    # # DESIGN P with dense
    # ### StandarScaler normalization - Fully connected - 100 dense
    print('Metabolic and signaling with StandardScaler normalization - ' +
          str(df_weight_both.shape[0]) + ' gene - dense100')
    ss_dense_model, _ = tfm_NN.TFM_NNExperiment(
        X_train_=array_train_X_ss,
        y_train_=array_train_y_ss,
        X_test_=array_test_X_ss,
        y_test_=array_test_y_ss,
        df_w_=pd.DataFrame(),
        bio_='dense_',
        design_name_='metsig_SScaler_1_layer_100',
        pathway_layer_=False,
        second_layer_=False,
        epochs_=epochs_default,
        batch_size_=batch_size_default,
        unit_size_=100).build()

    # # DESIGN A with 1-LAYER and 2-LAYER
    unit_size = len(df_weight_metabolic_signaling.columns)

    # ## with 1-LAYER
    # ### StandardScaler normalization - Pathways connection - 250 nodes
    print('Metabolic and signaling with StandardScaler normalization - ' +
          str(df_weight_both.shape[0]) + ' gene - pathways' + str(unit_size))
    ss_a1_model, _ = tfm_NN.TFM_NNExperiment(
    array_test_X_ss.append(np.array(X_test_ss))
    array_train_y_ss.append(np.array(y_train_ss))
    array_test_y_ss.append(np.array(y_test_ss))

    # # DESIGN P1 with 1-LAYER

    # ### StandardScaler normalization - Fully connected - 100 dense
    print('Paper dataset with StandardScaler normalization - ' +
          str(df_paper.shape[1] - 1) + ' gene - dense100')
    ss_p1_model, _ = tfm_NN.TFM_NNExperiment(X_train_=array_train_X_ss,
                                             y_train_=array_train_y_ss,
                                             X_test_=array_test_X_ss,
                                             y_test_=array_test_y_ss,
                                             df_w_=pd.DataFrame(),
                                             bio_='dense_',
                                             design_name_='gene_' +
                                             str(df_paper.shape[1] - 1) +
                                             '_SScaler_1_layer_100',
                                             pathway_layer_=False,
                                             second_layer_=False,
                                             epochs_=epochs_default,
                                             batch_size_=batch_size_default,
                                             unit_size_=100).build()

    # # DESIGN P2 with 1-LAYER - signaling
    unit_size = len(df_weight_paper_signaling_dense_pathway.columns)

    # ### StandardScaler normalization - Fully (100 dense) + Partially (92 signaling pathway) connected - dense+pathway192
    print('Paper dataset with StandardScaler normalization - ' +
          str(df_paper.shape[1] - 1) + ' gene - dense+pathway' +
          str(unit_size))
    ss_p2_sig_model, _ = tfm_NN.TFM_NNExperiment(