array_train_X_ss.append(np.array(X_train_ss)) array_test_X_ss.append(np.array(X_test_ss)) array_train_y_ss.append(np.array(y_train_ss)) array_test_y_ss.append(np.array(y_test_ss)) # # DESIGN P with dense # ### StandarScaler normalization - Fully connected - 100 dense print('Metabolic and signaling with StandardScaler normalization - ' + str(df_weight_both.shape[0]) + ' gene - dense100') ss_dense_model, _ = tfm_NN.TFM_NNExperiment( X_train_=array_train_X_ss, y_train_=array_train_y_ss, X_test_=array_test_X_ss, y_test_=array_test_y_ss, df_w_=pd.DataFrame(), bio_='dense_', design_name_='metsig_SScaler_1_layer_100', pathway_layer_=False, second_layer_=False, epochs_=epochs_default, batch_size_=batch_size_default, unit_size_=100).build() # # DESIGN A with 1-LAYER and 2-LAYER unit_size = len(df_weight_metabolic_signaling.columns) # ## with 1-LAYER # ### StandardScaler normalization - Pathways connection - 250 nodes print('Metabolic and signaling with StandardScaler normalization - ' + str(df_weight_both.shape[0]) + ' gene - pathways' + str(unit_size)) ss_a1_model, _ = tfm_NN.TFM_NNExperiment(
array_test_X_ss.append(np.array(X_test_ss)) array_train_y_ss.append(np.array(y_train_ss)) array_test_y_ss.append(np.array(y_test_ss)) # # DESIGN P1 with 1-LAYER # ### StandardScaler normalization - Fully connected - 100 dense print('Paper dataset with StandardScaler normalization - ' + str(df_paper.shape[1] - 1) + ' gene - dense100') ss_p1_model, _ = tfm_NN.TFM_NNExperiment(X_train_=array_train_X_ss, y_train_=array_train_y_ss, X_test_=array_test_X_ss, y_test_=array_test_y_ss, df_w_=pd.DataFrame(), bio_='dense_', design_name_='gene_' + str(df_paper.shape[1] - 1) + '_SScaler_1_layer_100', pathway_layer_=False, second_layer_=False, epochs_=epochs_default, batch_size_=batch_size_default, unit_size_=100).build() # # DESIGN P2 with 1-LAYER - signaling unit_size = len(df_weight_paper_signaling_dense_pathway.columns) # ### StandardScaler normalization - Fully (100 dense) + Partially (92 signaling pathway) connected - dense+pathway192 print('Paper dataset with StandardScaler normalization - ' + str(df_paper.shape[1] - 1) + ' gene - dense+pathway' + str(unit_size)) ss_p2_sig_model, _ = tfm_NN.TFM_NNExperiment(