Example #1
0
    def __init__(self, time_step, src_dict, ancillary_dict, dst_dict,
                 alg_ancillary=None, alg_template_tags=None,
                 time_data=None, basin_data=None, geo_data=None, group_data=None,
                 flag_forcing_data='soil_moisture_data',
                 flag_ancillary_updating=True):

        self.time_step = pd.Timestamp(time_step)

        self.flag_forcing_data = flag_forcing_data
        self.file_name_tag = 'file_name'
        self.folder_name_tag = 'folder_name'

        self.alg_template_tags = alg_template_tags

        self.file_data_basin = basin_data
        self.file_data_geo = geo_data

        self.structure_data_group = group_data

        search_period_list = []
        search_type_list = []
        for group_name, group_fields in self.structure_data_group.items():
            period_tmp = get_dict_nested_value(group_fields, ["sm_datasets", "search_period"])
            type_tmp = get_dict_nested_value(group_fields, ["sm_datasets", "search_type"])
            search_period_list.extend(period_tmp)
            search_type_list.extend(type_tmp)
        search_period_list = list(set(search_period_list))
        search_type_list = list(set(search_type_list))

        self.search_delta_max = find_maximum_delta(search_period_list)
        self.search_period_max, self.search_frequency_max = split_time_parts(self.search_delta_max)
        if search_type_list.__len__() > 1:
            logging.error(' ===> SearchType is not unique.')
            raise NotImplementedError('Case not allowed.')
        else:
            self.search_period_type = search_type_list[0]

        self.time_data = time_data[self.flag_forcing_data]
        self.time_range = self.collect_file_time()

        self.file_name_src_raw = src_dict[self.flag_forcing_data][self.file_name_tag]
        self.folder_name_src_raw = src_dict[self.flag_forcing_data][self.folder_name_tag]

        self.file_path_src_list = self.collect_file_list(
            self.folder_name_src_raw, self.file_name_src_raw)

        self.file_name_ancillary_raw = ancillary_dict[self.flag_forcing_data][self.file_name_tag]
        self.folder_name_ancillary_raw = ancillary_dict[self.flag_forcing_data][self.folder_name_tag]

        self.file_path_ancillary_list = self.collect_file_list(
            self.folder_name_ancillary_raw, self.file_name_ancillary_raw)

        self.file_extension_zip = '.gz'
        self.file_extension_unzip = '.bin'

        self.var_name_terrain = 'terrain'
        self.var_name_curve_number = 'cn'
        self.var_name_channels_network = 'channels_network'
        self.var_name_x = 'west_east'
        self.var_name_y = 'south_north'

        self.flag_ancillary_updating = flag_ancillary_updating

        self.file_metadata = {'description': 'soil_moisture'}
        self.file_epsg_code = 'EPSG:4326'

        self.file_path_processed = []
Example #2
0
    def organize_analysis_rain_point(self, var_name='rain'):

        logging.info(' ----> Compute rain analysis point [' +
                     str(self.time_step) + '] ... ')

        time_step = self.time_step

        group_data_alert_area = self.structure_data_group
        geo_data_weather_station = self.geo_data_weather_station

        group_analysis = {}
        for (group_data_key, group_data_items), geo_data_obj in zip(
                group_data_alert_area.items(),
                geo_data_weather_station.values()):

            logging.info(' -----> Alert Area ' + group_data_key + '  ... ')

            file_path_dest = collect_file_list(
                time_step,
                self.folder_name_dest_indicators_raw,
                self.file_name_dest_indicators_raw,
                self.alg_template_tags,
                alert_area_name=group_data_key)[0]

            if not os.path.exists(file_path_dest):

                # Point located in the selected area
                points_code_aa = list(geo_data_obj.keys())

                # Points located both in the selected area and in neighbours areas
                points_code_extended = []
                for point_code_ref, point_code_df in geo_data_obj.items():
                    point_code_tmp = point_code_df['code'].values
                    points_code_extended.extend(point_code_tmp)
                points_code_extended = list(set(points_code_extended))

                if set(points_code_aa) != set(points_code_extended):
                    logging.info(
                        ' ------> Some points are located in the neighbours areas'
                    )

                time_delta_max = find_maximum_delta(
                    group_data_items['rain_datasets']['search_period'])
                time_period_type = group_data_items['rain_datasets'][
                    'search_type'][0]
                time_period_max, time_frequency_max = split_time_parts(
                    time_delta_max)

                time_range = self.compute_time_range(time_step,
                                                     time_period_max,
                                                     time_period_type,
                                                     time_frequency_max)

                file_list = collect_file_list(
                    time_range, self.folder_name_ancillary_rain_point_raw,
                    self.file_name_ancillary_rain_point_raw,
                    self.alg_template_tags)

                file_analysis = True
                for file_step in file_list:
                    if not os.path.exists(file_step):
                        logging.warning(' ===> Filename ' + file_step +
                                        ' does not exist')
                        file_analysis = False
                        break

                if file_analysis:

                    if file_list[0].endswith('.csv'):

                        if file_list.__len__() > 1:

                            point_collections = None
                            point_time = []
                            for file_id, (file_step,
                                          timestamp_step) in enumerate(
                                              zip(file_list, time_range)):

                                logging.info(' ------> Timestep ' +
                                             str(timestamp_step) + ' ... ')

                                point_obj_raw = pd.read_csv(file_step)

                                point_obj_timestamp = pd.Timestamp(
                                    list(set(point_obj_raw['time'].values))[0])

                                point_obj_aa = point_obj_raw[point_obj_raw[
                                    'code'].isin(points_code_extended)]
                                point_obj_aa = point_obj_aa.drop(columns=[
                                    'time', 'index', 'name', 'longitude',
                                    'latitude'
                                ])

                                point_obj_aa = point_obj_aa.set_index('code')
                                point_obj_aa.index.name = 'code'

                                if point_collections is None:
                                    point_collections = deepcopy(point_obj_aa)
                                else:
                                    point_collections = pd.concat(
                                        [point_collections, point_obj_aa],
                                        1,
                                        ignore_index=True)
                                point_time.append(point_obj_timestamp)

                                logging.info(' ------> Timestep ' +
                                             str(timestamp_step) + ' ... DONE')

                            point_values = point_collections.values.T
                            point_code = point_collections.index.values
                            point_datetime_idx = pd.DatetimeIndex(point_time)

                            point_df = pd.DataFrame(data=point_values,
                                                    index=point_time,
                                                    columns=point_code)

                        else:
                            logging.error(
                                ' ===> Length of file list is not allowed')
                            raise NotImplementedError(
                                'Case is not implemented yet')
                    else:
                        logging.error(' ===> Filename format is not allowed')
                        raise NotImplementedError(
                            'Format is not implemented yet')

                    analysis_obj = {}
                    for geo_key, geo_neighbour in geo_data_obj.items():
                        logging.info(' ------> Weather Station ' + geo_key +
                                     ' ... ')

                        geo_codes_nb = list(geo_neighbour['code'])
                        geo_codes_filter = list(
                            set(geo_codes_nb).intersection(
                                list(point_df.columns)))

                        if geo_codes_filter.__len__() > 0:
                            for time_interval_value in group_data_items[
                                    'rain_datasets']['search_period']:

                                logging.info(' -------> Compute peak for ' +
                                             time_interval_value + ' ... ')

                                tag_rain_peak = self.template_rain_point_peak.format(
                                    time_interval_value)

                                point_df_select = point_df[geo_codes_filter]
                                point_df_resample = point_df_select.resample(
                                    time_interval_value,
                                    label='right').max()[:-1]
                                point_max_value = point_df_resample.to_numpy(
                                ).max()

                                if tag_rain_peak not in list(
                                        analysis_obj.keys()):
                                    analysis_obj[tag_rain_peak] = {}
                                    analysis_obj[tag_rain_peak][
                                        geo_key] = point_max_value
                                else:
                                    point_max_tmp = analysis_obj[tag_rain_peak]
                                    point_max_tmp[geo_key] = point_max_value
                                    analysis_obj[tag_rain_peak] = point_max_tmp

                                logging.info(' -------> Compute peak for ' +
                                             time_interval_value + ' ... DONE')

                            logging.info(' ------> Weather Station ' +
                                         geo_key + ' ... DONE')
                        else:
                            logging.info(' ------> Weather Station ' +
                                         geo_key +
                                         ' ... SKIPPED. Datasets are null')

                    peak_obj = {}
                    for analysis_time, analysis_dataset in analysis_obj.items(
                    ):
                        value_max = pd.Series(analysis_dataset).max()
                        peak_obj[analysis_time] = value_max

                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... DONE')

                else:
                    peak_obj = None
                    logging.warning(' ===> Rain data are not available')
                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... SKIPPED. Datasets are not available.')

                group_analysis[group_data_key] = peak_obj

            else:

                logging.info(' -----> Alert Area ' + group_data_key +
                             ' ... SKIPPED. Analysis file created previously')

        logging.info(' ----> Compute rain analysis point [' +
                     str(self.time_step) + '] ... DONE')

        return group_analysis
Example #3
0
    def organize_analysis_sm(self, var_name='soil_moisture'):

        logging.info(' ----> Compute soil moisture analysis [' +
                     str(self.time_step) + '] ... ')

        time_step = self.time_step
        geo_data_alert_area = self.geo_data_alert_area
        group_data_alert_area = self.structure_data_group

        group_analysis = {}
        for (group_data_key, group_data_items), geo_data_dframe in zip(
                group_data_alert_area.items(), geo_data_alert_area.values()):

            logging.info(' -----> Alert Area ' + group_data_key + '  ... ')

            geoy_out_1d = geo_data_dframe['south_north'].values
            geox_out_1d = geo_data_dframe['west_east'].values
            mask_2d = geo_data_dframe.values

            geox_out_2d, geoy_out_2d = np.meshgrid(geox_out_1d, geoy_out_1d)

            time_delta_max = find_maximum_delta(
                group_data_items['sm_datasets']['search_period'])
            time_period_type = group_data_items['sm_datasets']['search_type'][
                0]
            time_period_max, time_frequency_max = split_time_parts(
                time_delta_max)

            time_range = self.compute_time_range(time_step, time_period_max,
                                                 time_period_type,
                                                 time_frequency_max)

            file_list = collect_file_list(time_range,
                                          self.folder_name_ancillary_sm_raw,
                                          self.file_name_ancillary_sm_raw,
                                          self.alg_template_tags,
                                          alert_area_name=group_data_key)

            file_path_dest = collect_file_list(
                time_step,
                self.folder_name_dest_indicators_raw,
                self.file_name_dest_indicators_raw,
                self.alg_template_tags,
                alert_area_name=group_data_key)[0]

            if not os.path.exists(file_path_dest):

                file_list_check = []
                time_range_check = []
                for file_step, timestamp_step in zip(file_list, time_range):
                    if os.path.exists(file_step):
                        file_list_check.append(file_step)
                        time_range_check.append(timestamp_step)
                file_analysis = False
                if file_list_check.__len__() >= 1:
                    file_analysis = True

                if file_analysis:

                    analysis_collections = {}
                    if file_list_check[0].endswith('.nc'):
                        file_data_raw = xr.open_mfdataset(file_list_check,
                                                          combine='by_coords')
                    elif file_list_check[0].endswith('.tiff'):

                        if file_list_check.__len__() == 1:
                            data_2d, proj, geotrans = read_file_tiff(
                                file_list_check[0])
                            file_data_raw = create_dset(
                                data_2d,
                                mask_2d,
                                geox_out_2d,
                                geoy_out_2d,
                                var_data_time=time_step,
                                var_data_name=var_name,
                                var_geo_name='mask',
                                var_data_attrs=None,
                                var_geo_attrs=None,
                                coord_name_x='longitude',
                                coord_name_y='latitude',
                                coord_name_time='time',
                                dim_name_x='west_east',
                                dim_name_y='south_north',
                                dim_name_time='time',
                                dims_order_2d=None,
                                dims_order_3d=None)

                        elif file_list.__len__() > 1:

                            data_3d = np.zeros(shape=[
                                geox_out_2d.shape[0], geoy_out_2d.shape[1],
                                file_list_check.__len__()
                            ])
                            data_3d[:, :, :] = np.nan
                            data_time = []
                            for file_id, (file_step,
                                          timestamp_step) in enumerate(
                                              zip(file_list_check,
                                                  time_range_check)):
                                data_2d, proj, geotrans = read_file_tiff(
                                    file_step)
                                data_3d[:, :, file_id] = data_2d
                                data_time.append(timestamp_step)

                            file_data_raw = create_dset(
                                data_3d,
                                mask_2d,
                                geox_out_2d,
                                geoy_out_2d,
                                var_data_time=data_time,
                                var_data_name=var_name,
                                var_geo_name='mask',
                                var_data_attrs=None,
                                var_geo_attrs=None,
                                coord_name_x='longitude',
                                coord_name_y='latitude',
                                coord_name_time='time',
                                dim_name_x='west_east',
                                dim_name_y='south_north',
                                dim_name_time='time',
                                dims_order_2d=None,
                                dims_order_3d=None)

                        else:
                            logging.error(
                                ' ===> Length of file list is not allowed')
                            raise NotImplementedError(
                                'Case is not implemented yet')

                    else:
                        logging.error(' ===> Filename format is not allowed')
                        raise NotImplementedError(
                            'Format is not implemented yet')

                    file_data_mean = file_data_raw[var_name].mean(
                        dim=['south_north', 'west_east'])

                    file_time = list(file_data_raw.time.values)
                    file_values_mean = file_data_mean.values

                    file_ts = pd.DatetimeIndex(file_time)

                    if file_ts.shape[0] == 1:
                        file_ts = [file_ts]
                        file_values_mean = [file_values_mean]

                    # Soil moisture average time-series
                    analysis_df = pd.DataFrame(
                        index=file_ts,
                        data=file_values_mean,
                        columns=[self.template_struct_ts]).fillna(value=pd.NA)

                    analysis_collections[self.template_struct_ts] = {}
                    analysis_collections[self.template_struct_ts] = analysis_df

                    # Soil moisture first value in tne selected period
                    tag_sm_point_first = self.template_sm_point_first
                    file_time_first = pd.Timestamp(
                        file_time[0]).strftime('%Y%m%d_%H%M')
                    file_value_first = float(file_values_mean[0])
                    tag_sm_point_first = tag_sm_point_first.format(
                        file_time_first)

                    # Soil moisture last value in tne selected period
                    tag_sm_point_last = self.template_sm_point_last
                    file_time_last = pd.Timestamp(
                        file_time[-1]).strftime('%Y%m%d_%H%M')
                    file_value_last = float(file_values_mean[-1])
                    tag_sm_point_last = tag_sm_point_last.format(
                        file_time_last)

                    # Soil moisture average in tne selected period
                    tag_sm_point_avg = self.template_sm_point_avg
                    file_value_avg = float(
                        analysis_df[self.template_struct_ts].mean())

                    # Soil moisture maximum in tne selected period
                    tag_sm_point_max = self.template_sm_point_max
                    file_value_max = float(
                        analysis_df[self.template_struct_ts].max())

                    #analysis_ts = analysis_df.max()

                    analysis_collections[self.template_struct_obj] = {}
                    analysis_collections[self.template_struct_obj][
                        tag_sm_point_first] = file_value_first
                    analysis_collections[self.template_struct_obj][
                        tag_sm_point_last] = file_value_last
                    analysis_collections[self.template_struct_obj][
                        tag_sm_point_avg] = file_value_avg
                    analysis_collections[self.template_struct_obj][
                        tag_sm_point_max] = file_value_max

                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... DONE')

                else:
                    analysis_collections = None
                    logging.warning(
                        ' ===> Soil moisture data are not available')
                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... SKIPPED. Datasets are not available.')

                group_analysis[group_data_key] = analysis_collections

            else:

                logging.info(' -----> Alert Area ' + group_data_key +
                             ' ... SKIPPED. Analysis file created previously')

        logging.info(' ----> Compute soil moisture analysis [' +
                     str(self.time_step) + '] ... DONE')

        return group_analysis
Example #4
0
    def organize_analysis_rain_map(self, var_name='rain'):

        logging.info(' ----> Compute rain analysis map [' +
                     str(self.time_step) + '] ... ')

        time_step = self.time_step
        geo_data_region = self.geo_data_region
        geo_data_alert_area = self.geo_data_alert_area
        index_data_alert_area = self.index_data_alert_area
        group_data_alert_area = self.structure_data_group

        geoy_region_1d = geo_data_region['south_north'].values
        geox_region_1d = geo_data_region['west_east'].values
        mask_region_2d = geo_data_region.values
        geox_region_2d, geoy_region_2d = np.meshgrid(geox_region_1d,
                                                     geoy_region_1d)

        group_analysis = {}
        for (group_data_key, group_data_items), geo_data_dframe in zip(
                group_data_alert_area.items(), geo_data_alert_area.values()):

            logging.info(' -----> Alert Area ' + group_data_key + '  ... ')

            file_path_dest = collect_file_list(
                time_step,
                self.folder_name_dest_indicators_raw,
                self.file_name_dest_indicators_raw,
                self.alg_template_tags,
                alert_area_name=group_data_key)[0]

            # Get index interpolated data between region and alert area domains
            if group_data_key in list(index_data_alert_area.keys()):
                index_data = index_data_alert_area[group_data_key]
            else:
                index_data = None

            if not os.path.exists(file_path_dest):

                geoy_out_1d = geo_data_dframe['south_north'].values
                geox_out_1d = geo_data_dframe['west_east'].values

                # Get subdomain mask, longitudes and latitudes
                mask_out_2d = geo_data_dframe.values
                geox_out_2d, geoy_out_2d = np.meshgrid(geox_out_1d,
                                                       geoy_out_1d)

                time_delta_max = find_maximum_delta(
                    group_data_items['rain_datasets']['search_period'])
                time_period_type = group_data_items['rain_datasets'][
                    'search_type'][0]
                time_period_max, time_frequency_max = split_time_parts(
                    time_delta_max)

                time_range = self.compute_time_range(time_step,
                                                     time_period_max,
                                                     time_period_type,
                                                     time_frequency_max)

                file_list = collect_file_list(
                    time_range, self.folder_name_ancillary_rain_map_raw,
                    self.file_name_ancillary_rain_map_raw,
                    self.alg_template_tags)

                file_analysis = True
                for file_step in file_list:
                    if not os.path.exists(file_step):
                        logging.warning(' ===> Filename ' + file_step +
                                        ' does not exist')
                        file_analysis = False
                        break

                if file_analysis:

                    if file_list[0].endswith('.nc'):
                        file_obj = xr.open_mfdataset(file_list,
                                                     combine='by_coords')
                    elif file_list[0].endswith('.tiff'):

                        if file_list.__len__() > 1:

                            data_out_3d = np.zeros(shape=[
                                geox_out_2d.shape[0], geoy_out_2d.shape[1],
                                file_list.__len__()
                            ])
                            data_out_3d[:, :, :] = np.nan
                            data_time = []
                            for file_id, (file_step,
                                          timestamp_step) in enumerate(
                                              zip(file_list, time_range)):
                                data_out_2d, proj, geotrans = read_file_tiff(
                                    file_step)

                                # Grid datasets over subdomain mask
                                values_out_interp = interp_grid2map(
                                    geox_region_2d,
                                    geoy_region_2d,
                                    data_out_2d.values,
                                    geox_out_2d,
                                    geoy_out_2d,
                                    index_out=index_data)
                                values_out_interp[mask_out_2d == 0] = np.nan

                                data_out_3d[:, :, file_id] = values_out_interp
                                data_time.append(timestamp_step)

                            file_obj = create_dset(data_out_3d,
                                                   mask_out_2d,
                                                   geox_out_2d,
                                                   geoy_out_2d,
                                                   var_data_time=data_time,
                                                   var_data_name=var_name,
                                                   var_geo_name='mask',
                                                   var_data_attrs=None,
                                                   var_geo_attrs=None,
                                                   coord_name_x='longitude',
                                                   coord_name_y='latitude',
                                                   coord_name_time='time',
                                                   dim_name_x='west_east',
                                                   dim_name_y='south_north',
                                                   dim_name_time='time',
                                                   dims_order_2d=None,
                                                   dims_order_3d=None)

                        else:
                            logging.error(
                                ' ===> Length of file list is not allowed')
                            raise NotImplementedError(
                                'Case is not implemented yet')

                    else:
                        logging.error(' ===> Filename format is not allowed')
                        raise NotImplementedError(
                            'Format is not implemented yet')

                    values_mean = file_obj[var_name].mean(
                        dim=['south_north', 'west_east']).values

                    analysis_df = pd.DataFrame(
                        index=time_range,
                        data=values_mean,
                        columns=[self.template_struct_ts]).fillna(value=pd.NA)

                    analysis_obj = {}
                    for time_interval_value in group_data_items[
                            'rain_datasets']['search_period']:
                        logging.info(
                            ' ------> Compute sum and avg values for ' +
                            time_interval_value + ' ... ')

                        time_period, time_frequency = split_time_parts(
                            time_interval_value)

                        tag_rain_accumulated = self.template_rain_point_accumulated.format(
                            time_interval_value)
                        # resample_df_sum = analysis_df[var_name].rolling(time_interval_value, min_periods=time_period).sum()
                        resample_df_sum = analysis_df[
                            self.template_struct_ts].resample(
                                time_interval_value, label='right').sum()[:-1]
                        analysis_df[tag_rain_accumulated] = resample_df_sum

                        tag_rain_avg = self.template_rain_point_avg.format(
                            time_interval_value)
                        # resample_df_avg = analysis_df[var_name].rolling(time_interval_value, min_periods=time_period).mean()
                        resample_df_avg = analysis_df[
                            self.template_struct_ts].resample(
                                time_interval_value, label='right').mean()[:-1]
                        analysis_df[tag_rain_avg] = resample_df_avg

                        analysis_obj[tag_rain_accumulated] = float(
                            resample_df_sum.max())
                        analysis_obj[tag_rain_avg] = float(
                            resample_df_avg.max())

                        logging.info(
                            ' ------> Compute sum and avg values for ' +
                            time_interval_value + ' ... DONE')

                    analysis_collections = {
                        self.template_struct_ts: analysis_df,
                        self.template_struct_obj: analysis_obj
                    }

                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... DONE')

                else:
                    analysis_collections = None
                    logging.warning(' ===> Rain data are not available')
                    logging.info(' -----> Alert Area ' + group_data_key +
                                 ' ... SKIPPED. Datasets are not available.')

                group_analysis[group_data_key] = analysis_collections

            else:

                logging.info(' -----> Alert Area ' + group_data_key +
                             ' ... SKIPPED. Analysis file created previously')

        logging.info(' ----> Compute rain analysis map [' +
                     str(self.time_step) + '] ... DONE')

        return group_analysis
Example #5
0
    def __init__(self, time_step, src_dict, ancillary_dict, dst_dict, tmp_dict=None,
                 alg_ancillary=None, alg_template_tags=None,
                 time_data=None, geo_data_region=None, geo_data_weather_station=None, group_data=None,
                 flag_forcing_data='rain_data',
                 flag_ancillary_data_map='rain_data_map', flag_ancillary_data_point='rain_data_point',
                 flag_ancillary_updating=True):

        self.time_step = pd.Timestamp(time_step)

        self.flag_forcing_data = flag_forcing_data
        self.flag_ancillary_data_map = flag_ancillary_data_map
        self.flag_ancillary_data_point = flag_ancillary_data_point

        self.file_name_tag = 'file_name'
        self.folder_name_tag = 'folder_name'
        self.region_tag = 'region'

        self.alg_ancillary = alg_ancillary
        self.alg_template_tags = alg_template_tags

        self.geo_data_region = geo_data_region
        self.geo_data_weather_station = geo_data_weather_station

        self.file_data_geo = self.geo_data_region[self.region_tag]
        self.structure_data_group = group_data

        search_period_list = []
        search_type_list = []
        for group_name, group_fields in self.structure_data_group.items():
            period_tmp = get_dict_nested_value(group_fields, ["rain_datasets", "search_period"])
            type_tmp = get_dict_nested_value(group_fields, ["rain_datasets", "search_type"])
            search_period_list.extend(period_tmp)
            search_type_list.extend(type_tmp)
        search_period_list = list(set(search_period_list))
        search_type_list = list(set(search_type_list))

        self.search_delta_max = find_maximum_delta(search_period_list)
        self.search_period_max, self.search_frequency_max = split_time_parts(self.search_delta_max)
        if search_type_list.__len__() > 1:
            logging.error(' ===> SearchType is not unique.')
            raise NotImplementedError('Case not allowed.')
        else:
            self.search_period_type = search_type_list[0]

        self.columns_src = ['code', 'name', 'longitude', 'latitude', 'time', 'data']
        self.column_ancillary = ['name', 'longitude', 'latitude', 'data']

        self.file_columns_sep = ';'
        self.file_scale_factor_longitude = 10
        self.file_scale_factor_latitude = 10
        self.file_scale_factor_rain = 1
        self.file_metadata = {'description': 'rain'}
        self.file_epsg_code = 'EPSG:4326'

        self.month_lut = {'01': 'gennaio', '02': 'febbraio', '03': 'marzo', '04': 'aprile', '05': 'maggio',
                          '06': 'giugno', '07': 'luglio', '08': 'agosto', '09': 'settembre', '10': 'ottobre',
                          '11': 'novembre', '12': 'dicembre'}

        self.time_data = time_data[self.flag_forcing_data]
        self.time_range = self.collect_file_time()

        self.file_name_src_raw = src_dict[self.flag_forcing_data][self.file_name_tag]
        self.folder_name_src_raw = src_dict[self.flag_forcing_data][self.folder_name_tag]

        self.file_path_src_list = self.collect_file_list(
            self.folder_name_src_raw, self.file_name_src_raw)

        self.file_name_ancillary_map_raw = ancillary_dict[self.flag_ancillary_data_map][self.file_name_tag]
        self.folder_name_ancillary_map_raw = ancillary_dict[self.flag_ancillary_data_map][self.folder_name_tag]

        self.file_path_ancillary_map_list = self.collect_file_list(
            self.folder_name_ancillary_map_raw, self.file_name_ancillary_map_raw)

        self.file_name_ancillary_point_raw = ancillary_dict[self.flag_ancillary_data_point][self.file_name_tag]
        self.folder_name_ancillary_point_raw = ancillary_dict[self.flag_ancillary_data_point][self.folder_name_tag]

        self.file_path_ancillary_point_list = self.collect_file_list(
            self.folder_name_ancillary_point_raw, self.file_name_ancillary_point_raw)

        self.flag_ancillary_updating = flag_ancillary_updating

        self.tmp_dict = tmp_dict
        self.file_name_tmp_raw = tmp_dict[self.file_name_tag]
        self.folder_name_tmp_raw = tmp_dict[self.folder_name_tag]

        if self.folder_name_tmp_raw is not None:
            self.file_path_tmp_list = self.collect_file_list(
                self.folder_name_tmp_raw, self.file_name_tmp_raw)

            self.folder_tmp = list(set(self.file_path_tmp_list))[0]
        else:
            self.folder_tmp = None

        self.file_path_processed_map = []
        self.file_path_processed_point = []