Example #1
0
 def test_alce_lr_embed5(self):
     cost_matrix = np.random.RandomState(1126).rand(3, 3)
     np.fill_diagonal(cost_matrix, 0)
     ds = Dataset(self.X + self.X_pool,
                  self.y[:3] + [None for _ in range(len(self.X_pool))])
     qs = ALCE(ds,
               cost_matrix,
               LinearRegression(),
               embed_dim=5,
               random_state=1126)
     qseq = run_qs(ds, qs, self.y_truth, self.quota)
     assert_array_equal(qseq,
                        np.array([16, 63, 34, 122, 38, 35, 17, 24, 43, 18]))
Example #2
0
def initialDataSetup(trainFeatures,
                     trainClasses,
                     testFeatures,
                     testClasses,
                     SNLabel='0'):
    """
    Set up ideal labeler.

    input: trainFeatures, array - train matrix
           trainClasses, list - train labels
           testFeatures, array - test (photometric) matrix
           testClasses, list - test (photometric) labels
           SNLabel, str - SN Ia flag

    output: tuple, (train_dataset, fullLabels, labeler)
    """

    # Concatenate features
    fullFeatures = np.vstack([trainFeatures, testFeatures])

    # Include None in place of labels from target sample
    partialClasses = np.concatenate([(trainClasses[:,
                                                   2] == SNLabel).astype(int),
                                     np.array([None] * testFeatures.shape[0])])

    # Complete concatenated labels for train and target samples
    fullClasses = np.concatenate([(trainClasses[:, 2] == SNLabel).astype(int),
                                  (testClasses[:, 2] == SNLabel).astype(int)])

    # Concatenate labels
    fullLabels = np.concatenate([trainClasses, testClasses])

    # Concatenated features and class labels with None on target data
    train_dataset = Dataset(fullFeatures, partialClasses)

    # Define ideal labeler
    labeler = IdealLabeler(Dataset(fullFeatures, fullClasses))

    return (train_dataset, fullLabels, labeler)
 def test_multilabel_with_auxiliary_learner_shlr(self):
     trn_ds = Dataset(self.X,
                      self.y[:5] + [None] * (len(self.y) - 5))
     qs = MultilabelWithAuxiliaryLearner(trn_ds,
             major_learner=BinaryRelevance(LogisticRegression(solver='liblinear',
                                                              multi_class="ovr")),
             auxiliary_learner=BinaryRelevance(SVM(gamma="auto")),
             criterion='shlr',
             b=1.,
             random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
             np.array([1258, 805, 459, 550, 783, 964, 736, 1004, 38, 750]))
Example #4
0
def split_train_test(n_classes):
    from sklearn.datasets import load_digits

    n_labeled = 5
    digits = load_digits(n_class=n_classes)  # consider binary case
    X = digits.data
    y = digits.target
    print(np.shape(X))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
    while len(np.unique(y_train[:n_labeled])) < n_classes:
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.33)

    trn_ds = Dataset(
        X_train,
        np.concatenate(
            [y_train[:n_labeled], [None] * (len(y_train) - n_labeled)]))
    tst_ds = Dataset(X_test, y_test)

    return trn_ds, tst_ds, digits
Example #5
0
 def test_hs_subsampling(self):
     ds = Dataset(self.X, self.y[:10] + [None] * (len(self.y) - 10))
     sub_qs = UncertaintySampling(ds,
                                  model=SVM(gamma='auto',
                                            decision_function_shape='ovr'))
     qs = HS(ds, self.classes, subsample_qs=sub_qs, random_state=1126)
     qseq = run_qs(ds, qs, self.y, len(self.y) - 10)
     assert_array_equal(
         np.concatenate([qseq[:10], qseq[-10:]]),
         np.array([
             120, 50, 33, 28, 78, 133, 52, 124, 102, 109, 81, 108, 12, 10,
             89, 114, 92, 126, 48, 25
         ]))
Example #6
0
def initializeAWTLPool(X_source, y_source, X_target_train, y_target_train, n_labeled, sample_weights):
    
    # create training set by appending the train sample from target to all instances from source
    X_train = np.vstack([X_source,X_target_train])
    y_train = np.append(y_source,y_target_train)
    
    # train_ds is the whole X_train but only the n_labeled (all source) instances are labeled
    train_ds = le.AWTLDataset(X=X_train,y=np.concatenate([y_train[:n_labeled], [None] * (len(y_train) - n_labeled)]), da_weights=sample_weights)

    # here we have the fully labeled training set 
    fully_labeled_trn_ds = Dataset(X=X_train,y=y_train)

    return train_ds, fully_labeled_trn_ds
Example #7
0
 def test_multilabel_with_auxiliary_learner_mmr(self):
     trn_ds = Dataset(self.X, self.y[:5] + [None] * (len(self.y) - 5))
     qs = MultilabelWithAuxiliaryLearner(
         trn_ds,
         major_learner=BinaryRelevance(
             LogisticRegression(solver='liblinear', multi_class="ovr")),
         auxiliary_learner=BinaryRelevance(SVM(gamma="auto")),
         criterion='mmr',
         random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq,
         np.array([1258, 1461, 231, 1198, 1498, 1374, 955, 1367, 265, 144]))
Example #8
0
def _E(args):
    X, y, qx, clf, label_count, sigma, model = args
    sigmoid = lambda x: 1 / (1 + np.exp(-x))
    query_point = sigmoid(clf.predict_real([qx]))
    feature_count = len(X[0])
    ret = 0.0
    for i in range(label_count):
        clf_ = copy.copy(model)
        clf_.train(Dataset(np.vstack((X, [qx])), np.append(y, i)))
        PI = sigmoid(clf_.predict_real(np.vstack((X, [qx]))))
        ret += query_point[-1][i] * _Phi(sigma, PI[:-1], X, PI[-1], qx,
                                         label_count, feature_count)
    return ret
Example #9
0
 def test_QueryByCommittee(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([267, 210, 229, 220, 134, 252, 222, 142, 245, 228]))
Example #10
0
def main():
    # n_labeled = 10      # number of samples that are initially labeled

    # Load dataset
    # val_data
    # X_test = np.load('../ziqi/train_data_5000.npy')
    # y_test_csv = pd.read_csv('../ziqi/train_data_label_5000.csv')
    # y_test = np.array([i for i in y_test_csv['label']])
    # tst_ds = Dataset(X_test, y_test)
    #
    # noisy_data
    y_csv = pd.read_csv('data_label.csv')
    y_test = y_csv['label']
    y_test = [i for i in y_test]
    y_test = np.array(y_test)

    X_pool = np.load('data.npy')
    y_pool = [None] * len(X_pool)
    pool_ds = Dataset(X_pool, y_pool)

    # Comparing UncertaintySampling strategy with entropy uncertainty sampling
    model_folder = './model/vgg-x30-9982.pb'

    # model predict
    print('model predict....')
    model = MyModelTF(model_folder, batch_size=256)
    score = model.predict(X_pool)
    score = pd.DataFrame(score)
    score.to_csv('noisy_predict_all.csv', index=False)
    # score = np.argmax(score, axis=1)

    # all_csv = {'indexs':y_test_csv['filename'], 'pre_label': score, 'name_label': y_test}
    # all_csv = pd.DataFrame(all_csv)
    # all_csv.to_csv('../ziqi/result/train_predict_result.csv')
    # acc_test = model.score(tst_ds)
    # print('acc: ', acc_test)

    print('make query')
    qs = UncertaintySampling(pool_ds,
                             method='entropy',
                             model=MyModelTF(model_folder, batch_size=128))
    ask_ids, labels = qs.make_query(return_label=True, n_instances=5000)
    print('ask_ids : ', np.shape(ask_ids))

    csv = {
        'indexs': ask_ids,
        'pre_label': labels,
        'name_label': y_test[ask_ids]
    }
    csv = pd.DataFrame(csv)
    csv.to_csv('./result/sample_result.csv', index=False)
Example #11
0
def runrnn(trn_ds, tst_ds, val_ds, lbr, model, quota, best_val, batchsize):
    E_in, E_out = [], []
    intern = 0
    finalnum = 0
    print("[Important] Start the RNN Train:")
    start_time = time.time()
    if quota % batchsize == 0:
        intern = int(quota / batchsize)
    else:
        intern = int(quota / batchsize) + 1
        finalnum = int(quota % batchsize)

    for t in range(intern):
        print("[RNN]this is the " + str(t) + " times to ask")
        x_first_train = []
        y_first_train = []

        scores = model.predict_pro(trn_ds)

        unlabeled_entry_ids, X_pool = zip(*trn_ds.get_unlabeled_entries())

        if t == intern - 1 and finalnum != 0:
            max_n = heapq.nsmallest(finalnum, range(len(scores)), scores.take)
        else:
            max_n = heapq.nsmallest(batchsize, range(len(scores)), scores.take)

        X, _ = zip(*trn_ds.data)

        print(max_n)
        for ask_id in max_n:
            real_id = unlabeled_entry_ids[ask_id]
            lb = lbr.label(X[real_id])
            trn_ds.update(real_id, lb)
            x_first_train.append(X[real_id])
            y_first_train.append(lb)

        x_first_train = np.array(x_first_train)
        y_first_train = np.array(y_first_train)

        first_train = Dataset(x_first_train, y_first_train)

        best_val = model.retrain(trn_ds, val_ds, best_val, first_train)

        # E_in = np.append(E_in, 1 - model.score(trn_ds))
        E_out = np.append(E_out, model.score(tst_ds))
        # print (E_in)
        print(E_out)

    E_time = get_time_dif(start_time)

    return E_out, E_time
Example #12
0
def split_train_test(train_dir, vocab_dir, test_size, n_labeled, wordslength):
    #train_dir = './data/labeled1.txt'
    #vocab_dir = './data/vocab_yinan_test_rnn4.txt'
    if not os.path.exists(vocab_dir):
        build_vocab(train_dir,vocab_dir,1000)
    categories, cat_to_id = read_category()
    words, word_to_id = read_vocab(vocab_dir)

    x,y = process_file(train_dir, word_to_id, cat_to_id, wordslength)
    # x_rnn, y_rnn = process_file_rnn(train_dir, word_to_id, cat_to_id, 600)

    listy = []
    for i in range(np.shape(y)[0]):
        for j in range(np.shape(y)[1]):
            if y[i][j] == 1:
                listy.append(j)
    listy = np.array(listy)


    X_train, X_test, y_train, y_test = \
        train_test_split(x, listy, test_size=test_size)

    # X_train = X_train[:(n_labeled + 24)]
    trn_ds = Dataset(X_train, np.concatenate(
        [y_train[:n_labeled], [None] * (len(y_train) - n_labeled)]))
    # trn_ds = Dataset(X_train, np.concatenate(
    #     [y_train[:n_labeled], [None] * (len(y_train) - n_labeled)]))
    fully_tst_ds = Dataset(X_test, y_test)

    X_val, X_real_test, y_val, y_real_test = \
            train_test_split(X_test, y_test, test_size=0.5)

    tst_ds = Dataset(X_real_test, y_real_test)
    val_ds = Dataset(X_val, y_val)

    fully_labeled_trn_ds = Dataset(X_train, y_train)
#    print (fully_labeled_trn_ds.get_entries()[0])
    return trn_ds, tst_ds, y_train, fully_labeled_trn_ds, fully_tst_ds, val_ds
 def test_multilabel_with_auxiliary_learner_hlr(self):
     trn_ds = Dataset(self.X,
                      self.y[:5] + [None] * (len(self.y) - 5))
     qs = MultilabelWithAuxiliaryLearner(trn_ds,
             major_learner=BinaryRelevance(
                     LogisticRegression(solver='liblinear',
                                        multi_class="ovr",
                                        random_state=1126)),
             auxiliary_learner=BinaryRelevance(SVM(gamma="auto")),
             criterion='hlr',
             random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
             np.array([701, 1403, 147, 897, 974, 1266, 870, 703, 292, 1146]))
Example #14
0
 def test_QueryByCommittee(self):
     #import ipdb; ipdb.set_trace()
     random.seed(1126)
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ])
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([11, 207, 101, 30, 116, 108, 83, 172, 211, 42]))
Example #15
0
 def test_query_by_committee_kl_divergence(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           disagreement='kl_divergence',
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([228, 111, 162, 243, 213, 122, 110, 108, 156, 37]))
Example #16
0
def split_train_test(X, y, test_size, n_class):

    target = np.unique(y)
    # mapping the targets to 0 to n_classes-1
    # y = np.array([np.where(target == i)[0][0] for i in data['target']])

    X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=test_size)

    X_trn = X_trn[:, 1:]
    y_tst = X_tst[:, 0]
    X_tst = X_tst[:, 1:]
    y_tst = y_tst.astype('int32')

    # making sure each class appears ones initially
    init_y_ind = np.array(
        [np.where(y_trn == i)[0][0] for i in range(len(target))])

    y_ind = np.array([i for i in range(len(X_trn)) if i not in init_y_ind])
    trn_ds = Dataset(
        np.vstack((X_trn[init_y_ind], X_trn[y_ind])),
        np.concatenate((y_trn[init_y_ind], [None] * (len(y_ind)))))

    tst_ds = Dataset(X_tst, y_tst)

    fully_labeled_trn_ds = Dataset(
        np.vstack((X_trn[init_y_ind], X_trn[y_ind])),
        np.concatenate((y_trn[init_y_ind], y_trn[y_ind])))

    cost_matrix = 1.0 * np.ones([len(target), len(target)])
    for ii in range(0, len(target)):
        for jj in range(0, len(target)):
            # cost_matrix[ii, jj] = (ii - jj) * (ii - jj)
            cost_matrix[ii, jj] = abs(ii - jj) / n_class

    np.fill_diagonal(cost_matrix, 0)

    return trn_ds, tst_ds, fully_labeled_trn_ds, cost_matrix
Example #17
0
    def test_binary_relevance_lr(self):
        br = BinaryRelevance(base_clf=LogisticRegression(
            solver='liblinear', multi_class="ovr", random_state=1126))
        br.train(Dataset(self.X_train, self.Y_train))

        br_pred_train = br.predict(self.X_train).astype(int)
        br_pred_test = br.predict(self.X_test).astype(int)

        br_pred_proba_train = br.predict_proba(self.X_train).astype(float)
        br_pred_proba_test = br.predict_proba(self.X_test).astype(float)

        for i in range(np.shape(self.Y_train)[1]):
            clf = sklearn.linear_model.LogisticRegression(solver='liblinear',
                                                          multi_class="ovr",
                                                          random_state=1126)
            clf.fit(self.X_train, self.Y_train[:, i])

            assert_array_almost_equal(
                clf.predict(self.X_train).astype(int), br_pred_train[:, i])
            assert_array_almost_equal(
                clf.predict(self.X_test).astype(int), br_pred_test[:, i])

            assert_array_almost_equal(
                clf.predict_proba(self.X_train)[:, 1].astype(float),
                br_pred_proba_train[:, i].astype(float))
            assert_array_almost_equal(
                clf.predict_proba(self.X_test)[:, 1].astype(float),
                br_pred_proba_test[:, i].astype(float))

        self.assertEqual(
            np.mean(np.abs(self.Y_test - br_pred_test).mean(axis=1)),
            br.score(Dataset(self.X_test, self.Y_test), 'hamming'))

        self.assertRaises(
            NotImplementedError,
            lambda: br.score(Dataset(self.X_test, self.Y_test),
                             criterion='not_exist'))
Example #18
0
 def test_query_by_committee_vote(self):
     #self.skipTest("In this version we randomize make queries")
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           disagreement='vote',
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
                        np.array([10, 12, 11, 13, 16, 14, 17, 18, 19, 21]))
Example #19
0
 def test_ActiveLearningByLearning(self):
     np.random.seed(1126)
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = ActiveLearningByLearning(trn_ds,
                                   T=self.quota,
                                   query_strategies=[
                                       UncertaintySampling(
                                           trn_ds,
                                           model=LogisticRegression()),
                                       HintSVM(trn_ds)
                                   ],
                                   model=LogisticRegression())
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([103, 220, 118, 75, 176, 50, 247, 199, 46, 55]))
Example #20
0
 def test_ActiveLearningByLearning(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = ActiveLearningByLearning(trn_ds,
                                   T=self.quota,
                                   query_strategies=[
                                       UncertaintySampling(
                                           trn_ds,
                                           model=LogisticRegression()),
                                       HintSVM(trn_ds, random_state=1126)
                                   ],
                                   model=LogisticRegression(),
                                   random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([173, 103, 133, 184, 187, 147, 251, 83, 93, 33]))
 def test_cost_sensitive_random_pair_encoding(self):
     trn_ds = Dataset(self.X, self.y[:5] + [None] * (len(self.y) - 5))
     model = BinaryRelevance(LogisticRegression(solver='liblinear',
                                                multi_class="ovr"))
     base_model = LogisticRegression(
             solver='liblinear', multi_class="ovr", random_state=1126)
     qs = CostSensitiveReferencePairEncoding(
             trn_ds,
             scoring_fn=pairwise_f1_score,
             model=model,
             base_model=base_model,
             n_models=10,
             n_jobs=1,
             random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
             np.array([149, 434, 1126, 719, 983, 564, 816, 732, 101, 1242]))
Example #22
0
    def test_ALBLTestCase(self):
        trn_ds = Dataset(
            self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
        qs = ActiveLearningByLearning(
            trn_ds,
            T=self.quota,
            query_strategies=[
                UncertaintySampling(trn_ds,
                                    model=SVM(kernel="linear",
                                              decision_function_shape="ovr")),
                QUIRE(trn_ds),
                RandomSampling(trn_ds)
            ],
            model=SVM(kernel="linear", decision_function_shape="ovr"),
            random_state=1126)

        qseq = run_qs(trn_ds, qs, self.y, self.quota)
        assert_array_equal(
            qseq, np.array([173, 103, 133, 184, 187, 147, 251, 83, 93, 33]))
Example #23
0
    def make_query(self):
        Xlabeled, y = self.dataset.get_labeled_entries()
        Xlabeled = np.array(Xlabeled)
        y = list(y)

        unlabeled_entry_ids, X_pool = self.dataset.get_unlabeled_entries()

        label_count = self.dataset.get_num_of_labels()

        clf = copy.copy(self.model)
        clf.train(Dataset(Xlabeled, y))

        p = Pool(self.n_jobs)
        errors = p.map(
            _E, [(Xlabeled, y, x, clf, label_count, self.sigma, self.model)
                 for x in X_pool])
        p.terminate()

        return unlabeled_entry_ids[errors.index(min(errors))]
Example #24
0
 def test_density_weighted_meta_uncertainty_lc(self):
     trn_ds = Dataset(self.X[:20], np.concatenate([self.y[:6],
                                                   [None] * 14]))
     base_qs = UncertaintySampling(trn_ds,
                                   method='lc',
                                   model=LogisticRegression(
                                       solver='liblinear',
                                       multi_class="ovr"))
     similarity_metric = cosine_similarity
     clustering_method = KMeans(n_clusters=3, random_state=1126)
     qs = DensityWeightedMeta(dataset=trn_ds,
                              base_query_strategy=base_qs,
                              similarity_metric=similarity_metric,
                              clustering_method=clustering_method,
                              beta=1.0,
                              random_state=1126)
     model = LogisticRegression(solver='liblinear', multi_class="ovr")
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
                        np.array([13, 18, 9, 12, 8, 16, 10, 19, 15, 17]))
Example #25
0
    def train(self, X, y):
        self.n_samples = np.shape(X)[0]
        self.n_labels = np.shape(y)[1]

        score0 = self.scoring_fn(
            y, np.tile(self.rep_label[0], (self.n_samples, 1)))
        score1 = self.scoring_fn(
            y, np.tile(self.rep_label[1], (self.n_samples, 1)))
        lbl = (((score1 - score0) > 0) + 0.0)

        weight = np.abs(score1 - score0)
        if np.sum(weight) > 0:
            weight = weight / np.sum(weight) * len(X)

        if len(np.unique(lbl)) == 1:
            self.label = np.unique(lbl)[0]
            self.base_clf_ = None
        else:
            self.base_clf_ = copy.deepcopy(self.base_clf)
            self.base_clf_.train(Dataset(X, lbl), sample_weight=weight)
Example #26
0
    def make_query(self, n_queries=1, n_jobs=20):
        labeled_entries = self.dataset.get_labeled_entries()
        Xlabeled, y = zip(*labeled_entries)
        Xlabeled = np.array(Xlabeled)
        y = list(y)

        unlabeled_entries = self.dataset.get_unlabeled_entries()
        unlabeled_entry_ids, X_pool = zip(*unlabeled_entries)

        label_count = self.dataset.get_num_of_labels()

        clf = copy.copy(self.model)
        clf.train(Dataset(Xlabeled, y))

        p = Pool(n_jobs)

        errors = p.map(self.E,
                       [(Xlabeled, y, x, clf, label_count) for x in X_pool])
        p.terminate()
        return unlabeled_entry_ids[errors.index(min(errors))]
Example #27
0
 def test_query_by_committee_vote(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           disagreement='vote',
                           models=[
                               LogisticRegression(C=1.0,
                                                  solver="liblinear",
                                                  multi_class="ovr"),
                               LogisticRegression(C=0.01,
                                                  solver="liblinear",
                                                  multi_class="ovr"),
                               LogisticRegression(C=100,
                                                  solver="liblinear",
                                                  multi_class="ovr")
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([267, 210, 229, 220, 134, 252, 222, 142, 245, 228]))
Example #28
0
    def make_query(self):
        dataset = self.dataset
        X, Y = dataset.get_labeled_entries()
        Y = np.array(Y)
        unlabeled_entry_ids, X_pool = dataset.get_unlabeled_entries()
        X_pool = np.array(X_pool)

        clfs = []
        boundaries = []
        for i in range(self.n_labels):
            if len(np.unique(Y[:, i])) == 1:
                clf = DummyClf()
            else:
                clf = copy.deepcopy(self.base_clf)
            clf.train(Dataset(X, Y[:, i]))
            boundaries.append(np.abs(clf.predict_real(X_pool)[:, 1]))
            clfs.append(clf)

        choices = np.where(np.array(boundaries) == np.min(boundaries))[1]
        ask_id = self.random_state_.choice(choices)

        return unlabeled_entry_ids[ask_id]
Example #29
0
    def train(self, dataset):
        r"""Train model with given feature.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_features)
            Train feature vector.

        Y : array-like, shape=(n_samples, n_labels)
            Target labels.

        Attributes
        ----------
        clfs\_ : list of :py:mod:`libact.models` object instances
            Classifier instances.

        Returns
        -------
        self : object
            Retuen self.
        """
        X, Y = dataset.format_sklearn()
        X = np.array(X)
        Y = np.array(Y)

        self.n_labels_ = np.shape(Y)[1]
        self.n_features_ = np.shape(X)[1]

        self.clfs_ = []
        for i in range(self.n_labels_):
            # TODO should we handle it here or we should handle it before calling
            if len(np.unique(Y[:, i])) == 1:
                clf = DummyClf()
            else:
                clf = copy.deepcopy(self.base_clf)
            clf.train(Dataset(X, Y[:, i]))
            self.clfs_.append(clf)

        return self
Example #30
0
    def make_query(self):
        dataset = self.dataset
        X, y = zip(*dataset.get_labeled_entries())
        unlabled_entries = dataset.get_unlabeled_entries()

        if isinstance(self.random_sampling, int):
            unlabled_entries = random.sample(unlabled_entries,
                                             k=self.random_sampling)
        elif isinstance(self.random_sampling, float):
            unlabled_entries = random.sample(
                unlabled_entries,
                k=int(len(unlabled_entries) * self.random_sampling))

        unlabeled_entry_ids, X_pool = zip(*unlabled_entries)

        classes = np.unique(y)
        n_classes = len(classes)

        self.model.train(dataset)
        proba = self.model.predict_proba(X_pool)

        scores = []
        for i, x in enumerate(X_pool):
            score = []
            for yi in range(n_classes):
                m = copy.deepcopy(self.model)
                m.train(Dataset(np.vstack((X, [x])), y + (yi, )))
                p = m.predict_proba(X_pool)

                if self.loss == '01':  # 0/1 loss
                    score.append(proba[i, yi] * np.sum(1 - np.max(p, axis=1)))
                elif self.loss == 'log':  # log loss
                    score.append(proba[i, yi] * -np.sum(p * np.log(p)))
            scores.append(np.sum(score))

        choices = np.where(np.array(scores) == np.min(scores))[0]
        ask_idx = self.random_state_.choice(choices)

        return unlabeled_entry_ids[ask_idx]