def test_logistic_regression(self): clf = sklearn.linear_model.LogisticRegression() clf.fit(self.X_train, self.y_train) lr = LogisticRegression() lr.train(Dataset(self.X_train, self.y_train)) assert_array_equal(clf.predict(self.X_train), lr.predict(self.X_train)) assert_array_equal(clf.predict(self.X_test), lr.predict(self.X_test)) self.assertEqual(clf.score(self.X_train, self.y_train), lr.score(Dataset(self.X_train, self.y_train))) self.assertEqual(clf.score(self.X_test, self.y_test), lr.score(Dataset(self.X_test, self.y_test)))
def test_LogisticRegression(self): clf = sklearn.linear_model.LogisticRegression() clf.fit(self.X_train, self.y_train) lr = LogisticRegression() lr.train(Dataset(self.X_train, self.y_train)) assert_array_equal( clf.predict(self.X_train), lr.predict(self.X_train)) assert_array_equal( clf.predict(self.X_test), lr.predict(self.X_test)) self.assertEqual( clf.score(self.X_train, self.y_train), lr.score(Dataset(self.X_train, self.y_train))) self.assertEqual( clf.score(self.X_test, self.y_test), lr.score(Dataset(self.X_test, self.y_test)))
def get_state_score(self): # type: () -> float """ adds the state's textual state to the dataset and check the increase in accuracy""" if self.prev_state is None: return 0 # initial state score from ResearchNLP.z_experiments.ex_insertion_order import scores_per_add_default from ResearchNLP.text_synthesis.heuristic_functions.heuristics.al_heuristics import SynStateUncertainty ds = SynStateUncertainty.build_query_strategy(self.sent_df, self.col_names)._dataset clf = LogisticRegression() clf.train(ds) p0, p1 = clf.predict_proba( np.array(ds.data[self.state_idx][0].reshape(1, -1)))[0] labeled_df = self.sent_df[self.sent_df[self.col_names.text].notnull()] def kfold_gain(train_set, dev_set, state_df, col_names): def depth1_gain(labeled_state_df): ex_added_list, res_list = scores_per_add_default( labeled_state_df, train_set, dev_set) f1_list = ExprScores.list_to_f1(res_list) return f1_list[1] - f1_list[ 0] # difference in f1 score. NOT NORMALIZED, but its supposed to be OK state_df.loc[0, col_names.tag] = 0 change0 = depth1_gain(state_df) state_df.loc[0, col_names.tag] = 1 change1 = depth1_gain(state_df) cn.add_experiment_param("5_spits_with_prob_kfold_gain") return p0 * change0 + p1 * change1 # total_gain = kfold_gain(labeled_df, labeled_df, self.state_df, self.col_names) from sklearn.model_selection import KFold total_gains = [] kf = KFold(n_splits=5) labeled_train_df = self.sent_df[self.sent_df[ self.col_names.tag].notnull()].reset_index(drop=True) for train, dev in kf.split(range(len(labeled_train_df))): train_df = labeled_train_df.iloc[train] dev_df = labeled_train_df.iloc[dev] total_gains.append( kfold_gain(train_df, dev_df, self.state_df, self.col_names)) inst_gain = sum(total_gains) / len(total_gains) return inst_gain
def main(): quota = 10 # ask human to label 30 samples n_classes = 5 E_out1, E_out2 = [], [] trn_ds, tst_ds, ds = split_train_test(n_classes) trn_ds2 = copy.deepcopy(trn_ds) qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression()) qs2 = RandomSampling(trn_ds2) model = LogisticRegression() fig = plt.figure() ax = fig.add_subplot(2, 1, 1) ax.set_xlabel('Number of Queries') ax.set_ylabel('Error') model.train(trn_ds) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) model.train(trn_ds2) E_out2 = np.append(E_out2, 1 - model.score(tst_ds)) query_num = np.arange(0, 1) p1, = ax.plot(query_num, E_out1, 'g', label='qs Eout') p2, = ax.plot(query_num, E_out2, 'k', label='random Eout') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=5) plt.show(block=False) img_ax = fig.add_subplot(2, 1, 2) box = img_ax.get_position() img_ax.set_position([box.x0, box.y0 - box.height * 0.1, box.width, box.height * 0.9]) # Give each label its name (labels are from 0 to n_classes-1) lbr = InteractiveLabeler(label_name=[str(lbl) for lbl in range(n_classes)]) for i in range(quota): ask_id = qs.make_query() print("asking sample from Uncertainty Sampling") # reshape the image to its width and height lb = lbr.label(trn_ds.data[ask_id][0].reshape(8, 8)) trn_ds.update(ask_id, lb) model.train(trn_ds) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) ask_id = qs2.make_query() print("asking sample from Random Sample") lb = lbr.label(trn_ds2.data[ask_id][0].reshape(8, 8)) trn_ds2.update(ask_id, lb) model.train(trn_ds2) E_out2 = np.append(E_out2, 1 - model.score(tst_ds))
def main(): quota = 10 # ask human to label 10 samples n_classes = 5 E_out1, E_out2 = [], [] trn_ds, tst_ds, ds = split_train_test(n_classes) trn_ds2 = copy.deepcopy(trn_ds) # print(trn_ds.get_entries()) # print(len(trn_ds)) qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression()) qs2 = RandomSampling(trn_ds2) model = LogisticRegression() fig = plt.figure() ax = fig.add_subplot(2, 1, 1) ax.set_xlabel('Number of Queries') ax.set_ylabel('Error') model.train(trn_ds) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) model.train(trn_ds2) E_out2 = np.append(E_out2, 1 - model.score(tst_ds)) query_num = np.arange(0, 1) p1, = ax.plot(query_num, E_out1, 'g', label='qs Eout') p2, = ax.plot(query_num, E_out2, 'k', label='random Eout') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=5) plt.show(block=False) img_ax = fig.add_subplot(2, 1, 2) box = img_ax.get_position() img_ax.set_position( [box.x0, box.y0 - box.height * 0.1, box.width, box.height * 0.9]) # Give each label its name (labels are from 0 to n_classes-1) lbr = InteractiveLabeler(label_name=[str(lbl) for lbl in range(n_classes)]) for i in range(quota): ask_id = qs.make_query() print("asking sample from Uncertainty Sampling") # reshape the image to its width and height lb = lbr.label(trn_ds.data[ask_id][0].reshape(8, 8)) trn_ds.update(ask_id, lb) model.train(trn_ds) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) ask_id = qs2.make_query() print("asking sample from Random Sample") lb = lbr.label(trn_ds2.data[ask_id][0].reshape(8, 8)) trn_ds2.update(ask_id, lb) model.train(trn_ds2) E_out2 = np.append(E_out2, 1 - model.score(tst_ds)) ax.set_xlim((0, i + 1)) ax.set_ylim((0, max(max(E_out1), max(E_out2)) + 0.2)) query_num = np.arange(0, i + 2) p1.set_xdata(query_num) p1.set_ydata(E_out1) p2.set_xdata(query_num) p2.set_ydata(E_out2) plt.draw() input("Press any key to continue...")
def main(args): acc_reviewer, acc_train, acc_test = [], [], [] trn_ds, tst_ds, y_train = split_train_test() # query strategy # https://libact.readthedocs.io/en/latest/libact.query_strategies.html # #libact-query-strategies-uncertainty-sampling-module qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression()) # The passive learning model. The model given in the query strategy is not # the same. Have a look at this one. model = LogisticRegression() fig = plt.figure() ax = fig.add_subplot(2, 1, 1) ax.set_xlabel('Number of Queries') ax.set_ylabel('Error') oracle = y_train[get_indices_labeled_entries(trn_ds)] review = [label for feat, label in trn_ds.get_labeled_entries()] reviewer_acc = accuracy_score(oracle, review) # Train the model on the train dataset. # Append the score (error). model.train(trn_ds) acc_reviewer = np.append(acc_reviewer, reviewer_acc) acc_train = np.append( acc_train, model.model.score([x[0] for x in trn_ds.get_entries()], y_train)) acc_test = np.append(acc_test, model.score(tst_ds)) query_num = np.arange(0, 1) p0, = ax.plot(query_num, acc_reviewer, 'g', label='Acc reviewer') p1, = ax.plot(query_num, acc_reviewer, 'b', label='Acc train') p2, = ax.plot(query_num, acc_test, 'r', label='Acc test') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=5) plt.show(block=False) img_ax = fig.add_subplot(2, 1, 2) box = img_ax.get_position() img_ax.set_position( [box.x0, box.y0 - box.height * 0.1, box.width, box.height * 0.9]) # Give each label its name (labels are from 0 to n_classes-1) lbr = InteractiveLabeler(label_name=["0", "1"]) # lbr = InteractivePaperLabeler(label_name=["0", "1"]) for i in range(args.quota): # make a query from the pool ask_id = qs.make_query() print("asking sample from Uncertainty Sampling") # reshape the image to its width and height data_point = trn_ds.data[ask_id][0].reshape(8, 8) lb = lbr.label(data_point) # update the label in the train dataset trn_ds.update(ask_id, lb) # train the model again model.train(trn_ds) # compute accuracy of the reviewer oracle = y_train[get_indices_labeled_entries(trn_ds)] review = [label for feat, label in trn_ds.get_labeled_entries()] reviewer_acc = accuracy_score(oracle, review) # append the score to the model acc_reviewer = np.append(acc_reviewer, reviewer_acc) acc_train = np.append( acc_train, model.model.score([x[0] for x in trn_ds.get_entries()], y_train)) acc_test = np.append(acc_test, model.score(tst_ds)) # adjust the limits of the axes ax.set_xlim((0, i + 1)) ax.set_ylim((0, max(acc_test) + 0.2)) query_num = np.arange(0, i + 2) p0.set_xdata(query_num) p0.set_ydata(acc_reviewer) p1.set_xdata(query_num) p1.set_ydata(acc_train) p2.set_xdata(query_num) p2.set_ydata(acc_test) plt.draw() input("Press any key to continue...")
def main(): global pos_filepath, dataset_filepath, csv_filepath, vectors_list, ids_list dataset_filepath = "/Users/dndesign/Desktop/active_learning/vecteurs_et_infos/vectors_2015.txt" csv_filepath = "/Users/dndesign/Desktop/active_learning/donnees/corpus_2015_id-time-text.csv" pos_filepath = "/Users/dndesign/Desktop/active_learning/donnees/oriane_pos_id-time-text.csv" vectors_list, ids_list = get_vectors_list(dataset_filepath) timestr = time.strftime("%Y%m%d_%H%M%S") text_file = codecs.open("task_" + str(timestr) + ".txt", "w", "utf-8") print("Loading data...") text_file.write("Loading data...\n") # Open this file t0 = time.time() file = openfile_txt(dataset_filepath) num_lines = sum(1 for line in file) print("Treating " + str(num_lines) + " entries...") text_file.write("Treating : %s entries...\n" % str(num_lines)) # Number of queries to ask human to label quota = 10 E_out1, E_out2, E_out3, E_out4, E_out5, E_out6, E_out7 = [], [], [], [], [], [], [] trn_ds, tst_ds = split_train_test(csv_filepath) # model = SVM(kernel='linear') model = LogisticRegression() ''' UncertaintySampling (Least Confident) UncertaintySampling : it queries the instances about which it is least certain how to label Least Confident : it queries the instance whose posterior probability of being positive is nearest 0.5 ''' qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression(C=.01)) model.train(trn_ds) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out1 = np.append(E_out1, score) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) # E_out1 = np.append(E_out1, model.score(tst_ds)) ''' UncertaintySampling (Smallest Margin) Smallest Margin : it queries the instance whose posterior probability gap between the most and the second probable labels is minimal ''' trn_ds2 = copy.deepcopy(trn_ds) qs2 = UncertaintySampling(trn_ds2, method='sm', model=LogisticRegression(C=.01)) model.train(trn_ds2) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out2 = np.append(E_out2, score) E_out2 = np.append(E_out2, 1 - model.score(tst_ds)) # E_out2 = np.append(E_out2, model.score(tst_ds)) ''' UncertaintySampling (Entropy) Entropy : it reduces to the margin and least confident strategies NB : We notice that all those three strategies are equivalent for binary classification ''' trn_ds3 = copy.deepcopy(trn_ds) qs3 = UncertaintySampling(trn_ds3, method='entropy', model=LogisticRegression(C=.01)) model.train(trn_ds3) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out3 = np.append(E_out3, score) E_out3 = np.append(E_out3, 1 - model.score(tst_ds)) # E_out3 = np.append(E_out3, model.score(tst_ds)) ''' Random Sampling Random : it chooses randomly a query ''' trn_ds4 = copy.deepcopy(trn_ds) qs4 = RandomSampling(trn_ds4, random_state=1126) model.train(trn_ds4) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out4 = np.append(E_out4, score) E_out4 = np.append(E_out4, 1 - model.score(tst_ds)) # E_out4 = np.append(E_out4, model.score(tst_ds)) ''' QUIRE ''' trn_ds5 = copy.deepcopy(trn_ds) # qs5 = QUIRE(trn_ds5, kernel='linear') qs5 = QUIRE(trn_ds5) model.train(trn_ds5) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out5 = np.append(E_out5, score) E_out5 = np.append(E_out5, 1 - model.score(tst_ds)) # E_out5 = np.append(E_out5, model.score(tst_ds)) ''' QueryByCommittee (Vote Entropy) QueryByCommittee : it keeps a committee of classifiers and queries the instance that the committee members disagree, it also examines unlabeled examples and selects only those that are most informative for labeling Vote Entropy : a way of measuring disagreement Disadvantage : it does not consider the committee members’ class distributions. It also misses some informative unlabeled examples to label ''' trn_ds6 = copy.deepcopy(trn_ds) qs6 = QueryByCommittee(trn_ds6, disagreement='vote', models=[ LogisticRegression(C=1.0), LogisticRegression(C=0.01), LogisticRegression(C=100) ], random_state=1126) model.train(trn_ds6) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out6 = np.append(E_out6, score) E_out6 = np.append(E_out6, 1 - model.score(tst_ds)) # E_out6 = np.append(E_out6, model.score(tst_ds)) ''' QueryByCommittee (Kullback-Leibler Divergence) QueryByCommittee : it examines unlabeled examples and selects only those that are most informative for labeling Disadvantage : it misses some examples on which committee members disagree ''' trn_ds7 = copy.deepcopy(trn_ds) qs7 = QueryByCommittee(trn_ds7, disagreement='kl_divergence', models=[ LogisticRegression(C=1.0), LogisticRegression(C=0.01), LogisticRegression(C=100) ], random_state=1126) model.train(trn_ds7) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out7 = np.append(E_out7, score) E_out7 = np.append(E_out7, 1 - model.score(tst_ds)) # E_out7 = np.append(E_out7, model.score(tst_ds)) # HintSVM ''' trn_ds8 = copy.deepcopy(trn_ds) qs8 = HintSVM(trn_ds8, random_state=1126) model.train(trn_ds8) E_out8 = np.append(E_out8, 1 - model.score(tst_ds))''' with sns.axes_style("darkgrid"): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) query_num = np.arange(0, 1) p1, = ax.plot(query_num, E_out1, 'red') p2, = ax.plot(query_num, E_out2, 'blue') p3, = ax.plot(query_num, E_out3, 'green') p4, = ax.plot(query_num, E_out4, 'orange') p5, = ax.plot(query_num, E_out5, 'yellow') p6, = ax.plot(query_num, E_out6, 'black') p7, = ax.plot(query_num, E_out7, 'purple') plt.legend(('Least Confident', 'Smallest Margin', 'Entropy', 'Random Sampling', 'QUIRE', 'Vote Entropy', 'KL Divergence'), loc=1) # plt.legend(('Least Confident', 'Smallest Margin', 'Entropy', 'Random Sampling', 'Vote Entropy', 'KL Divergence'), loc=4) plt.ylabel('Accuracy') plt.xlabel('Number of Queries') plt.title('Active Learning - Query choice strategies') plt.ylim([0, 1]) plt.show(block=False) for i in range(quota): print("\n#################################################") print("Query number " + str(i) + " : ") print("#################################################\n") text_file.write( "\n#################################################\n") text_file.write("Query number %s : " % str(i)) text_file.write( "\n#################################################\n") ask_id = qs.make_query() print("\033[4mUsing Uncertainty Sampling (Least confident) :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using Uncertainty Sampling (Least confident) :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out1 = np.append(E_out1, score) E_out1 = np.append(E_out1, 1 - model.score(tst_ds)) # E_out1 = np.append(E_out1, model.score(tst_ds)) ask_id = qs2.make_query() print("\033[4mUsing Uncertainty Sampling (Smallest Margin) :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using Uncertainty Sampling (Smallest Margin) :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds2.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds2) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out2 = np.append(E_out2, score) E_out2 = np.append(E_out2, 1 - model.score(tst_ds)) # E_out2 = np.append(E_out2, model.score(tst_ds)) ask_id = qs3.make_query() print("\033[4mUsing Uncertainty Sampling (Entropy) :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using Uncertainty Sampling (Entropy) :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds3.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds3) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out3 = np.append(E_out3, score) E_out3 = np.append(E_out3, 1 - model.score(tst_ds)) # E_out3 = np.append(E_out3, model.score(tst_ds)) ask_id = qs4.make_query() print("\033[4mUsing Random Sampling :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using Random Sampling :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds4.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds4) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out4 = np.append(E_out4, score) E_out4 = np.append(E_out4, 1 - model.score(tst_ds)) # E_out4 = np.append(E_out4, model.score(tst_ds)) ask_id = qs5.make_query() print("\033[4mUsing QUIRE :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using QUIRE :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds5.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds5) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out5 = np.append(E_out5, score) E_out5 = np.append(E_out5, 1 - model.score(tst_ds)) # E_out5 = np.append(E_out5, model.score(tst_ds)) ask_id = qs6.make_query() print("\033[4mUsing QueryByCommittee (Vote Entropy) :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using QueryByCommittee (Vote Entropy) :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds6.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds6) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out6 = np.append(E_out6, score) E_out6 = np.append(E_out6, 1 - model.score(tst_ds)) # E_out6 = np.append(E_out6, model.score(tst_ds)) ask_id = qs7.make_query() print("\033[4mUsing QueryByCommittee (KL Divergence) :\033[0m") print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True) print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n") text_file.write("Using QueryByCommittee (KL Divergence) :\n") text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id))) text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id))) trn_ds7.update(ask_id, simulate_human_decision(ask_id)) model.train(trn_ds7) # preds = model.predict(tst_ds.format_sklearn()[0]) # score = accuracy_score(tst_ds.format_sklearn()[1], preds) # E_out7 = np.append(E_out7, score) E_out7 = np.append(E_out7, 1 - model.score(tst_ds)) # E_out7 = np.append(E_out7, model.score(tst_ds)) ax.set_xlim((0, i + 1)) ax.set_ylim((0, max(max(E_out1), max(E_out2), max(E_out3), max(E_out4), max(E_out5), max(E_out6), max(E_out7)) + 0.2)) # ax.set_ylim((0, max(max(E_out1), max(E_out2), max(E_out3), max(E_out4), max(E_out6), max(E_out7)) + 0.2)) query_num = np.arange(0, i + 2) p1.set_xdata(query_num) p1.set_ydata(E_out1) p2.set_xdata(query_num) p2.set_ydata(E_out2) p3.set_xdata(query_num) p3.set_ydata(E_out3) p4.set_xdata(query_num) p4.set_ydata(E_out4) p5.set_xdata(query_num) p5.set_ydata(E_out5) p6.set_xdata(query_num) p6.set_ydata(E_out6) p7.set_xdata(query_num) p7.set_ydata(E_out7) plt.draw() t2 = time.time() time_total = t2 - t0 print("\n\n\n#################################################\n") print("Execution time : %fs \n\n" % time_total) text_file.write( "\n\n\n#################################################\n") text_file.write("Execution time : %fs \n" % time_total) text_file.close() input("Press any key to save the plot...") plt.savefig('task_' + str(timestr) + '.png') print("Done")