Example #1
0
 def _do_initialize(self):
     if self.ds_path is None:
         datasets = _get_datasets(self.path)
         datasets_list = sorted(datasets, key=lambda i: i[1], reverse=True)
         name, size, shape, dtype, compression, chunks = datasets_list[0]
         self.ds_path = name
     with self.get_reader().get_h5ds() as h5ds:
         self._dtype = h5ds.dtype
         shape = h5ds.shape
         if len(shape) == self.sig_dims:
             # shape = (1,) + shape -> this leads to indexing errors down the line
             # so we currently don't support opening 2D HDF5 files
             raise DataSetException(
                 "2D HDF5 files are currently not supported")
         self._shape = Shape(shape, sig_dims=self.sig_dims)
         self._image_count = self._shape.nav.size
         self._meta = DataSetMeta(
             shape=self.shape,
             raw_dtype=self._dtype,
             sync_offset=self._sync_offset,
             image_count=self._image_count,
         )
         self._chunks = h5ds.chunks
         self._compression = h5ds.compression
         if self._compression is not None:
             warnings.warn(
                 "Loading compressed HDF5, performance can be worse than with other formats",
                 RuntimeWarning)
         self._nav_shape_product = self._shape.nav.size
         self._sync_offset_info = self.get_sync_offset_info()
     return self
Example #2
0
    def get_macrotile(self, dest_dtype="float32", roi=None):
        '''
        Return a single tile for the entire partition.

        This is useful to support process_partiton() in UDFs and to construct dask arrays
        from datasets.
        '''

        tiling_scheme = TilingScheme.make_for_shape(
            tileshape=self.shape,
            dataset_shape=self.meta.shape,
        )

        try:
            return next(
                self.get_tiles(
                    tiling_scheme=tiling_scheme,
                    dest_dtype=dest_dtype,
                    roi=roi,
                ))
        except StopIteration:
            tile_slice = Slice(
                origin=(self.slice.origin[0], 0, 0),
                shape=Shape((0, ) + tuple(self.slice.shape.sig), sig_dims=2),
            )
            return DataTile(
                np.zeros(tile_slice.shape, dtype=dest_dtype),
                tile_slice=tile_slice,
                scheme_idx=0,
            )
Example #3
0
def test_mask_caching_1():
    input_masks = [
        lambda: np.ones((128, 128)),
        lambda: np.zeros((128, 128)),
    ]
    mask_container = MaskContainer(mask_factories=input_masks, dtype="float32")

    shape = Shape((16, 16, 128, 128), sig_dims=2)
    slice_ = Slice(origin=(0, 0, 0, 0), shape=shape)
    mask_container[slice_]

    cache_info = mask_container._get_masks_for_slice.cache_info()
    assert cache_info.hits == 0
    assert cache_info.misses == 1

    mask_container[slice_]

    cache_info = mask_container._get_masks_for_slice.cache_info()
    assert cache_info.hits == 1
    assert cache_info.misses == 1

    slice_ = Slice(origin=(0, 1, 0, 0), shape=shape)

    mask_container[slice_]

    cache_info = mask_container._get_masks_for_slice.cache_info()
    assert cache_info.hits == 2
    assert cache_info.misses == 1
Example #4
0
    def get_partitions(self):
        fs = self._fileset
        num_frames = self.shape.nav.size
        f_per_part = num_frames // self._get_num_partitions()

        c0 = itertools.count(start=0, step=f_per_part)
        c1 = itertools.count(start=f_per_part, step=f_per_part)
        for (start, stop) in zip(c0, c1):
            if start >= num_frames:
                break
            stop = min(stop, num_frames)
            part_slice = Slice(origin=(
                start,
                0,
                0,
            ),
                               shape=Shape(((stop - start), SECTOR_SIZE[0],
                                            SECTOR_SIZE[1] * NUM_SECTORS),
                                           sig_dims=2))
            yield K2ISPartition(
                meta=self._meta,
                partition_slice=part_slice,
                sectors=fs.sectors,
                start_frame=start,
                num_frames=stop - start,
            )
Example #5
0
def test_roi_3(hdf5, lt_ctx):
    ds = H5DataSet(
        path=hdf5.filename,
        ds_path="data",
        target_size=12800 * 2,
    )
    ds = ds.initialize(lt_ctx.executor)
    roi = np.zeros(ds.shape.flatten_nav().nav, dtype=bool)
    roi[24] = 1

    tileshape = Shape((16, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    tiles = []
    for p in ds.get_partitions():
        for tile in p.get_tiles(tiling_scheme=tiling_scheme,
                                dest_dtype="float32",
                                roi=roi):
            print("tile:", tile)
            tiles.append(tile)
    assert len(tiles) == 1
    assert tiles[0].tile_slice.shape.nav.size == 1
    assert tuple(tiles[0].tile_slice.shape.sig) == (16, 16)
    assert tiles[0].tile_slice.origin == (0, 0, 0)
    assert np.allclose(tiles[0].data, hdf5['data'][4, 4])
Example #6
0
 def __init__(self, path, tileshape=None, scan_size=None):
     super().__init__()
     self._sig_dims = 2
     self._path = path
     if tileshape is None:
         tileshape = (1, 3, 256, 256)
     tileshape = Shape(tileshape, sig_dims=self._sig_dims)
     self._tileshape = tileshape
     if scan_size is not None:
         scan_size = tuple(scan_size)
     else:
         if not path.lower().endswith(".hdr"):
             raise ValueError(
                 "either scan_size needs to be passed, or path needs to point to a .hdr file"
             )
     self._scan_size = scan_size
     self._filename_cache = None
     self._files_sorted = None
     # ._preread_headers() calls ._files() which passes the cached headers down to MIBFile,
     # if they exist. So we need to make sure to initialize self._headers
     # before calling _preread_headers!
     self._headers = {}
     self._meta = None
     self._total_filesize = None
     self._sequence_start = None
Example #7
0
    def initialize(self, executor):
        self._filesize = executor.run_function(self._get_filesize)

        if self._same_offset:
            metadata = executor.run_function(_get_metadata,
                                             self._get_files()[0])
            self._offsets = {
                fn: metadata['offset']
                for fn in self._get_files()
            }
            self._z_sizes = {fn: metadata['zsize'] for fn in self._get_files()}
        else:
            metadata = dict(
                zip(
                    self._get_files(),
                    executor.map(_get_metadata, self._get_files()),
                ))
            self._offsets = {
                fn: metadata[fn]['offset']
                for fn in self._get_files()
            }
            self._z_sizes = {
                fn: metadata[fn]['zsize']
                for fn in self._get_files()
            }
        self._fileset = executor.run_function(self._get_fileset)
        first_file = next(self._fileset.files_from(0))
        nav_dims = self._get_scan_size()
        shape = nav_dims + tuple(first_file.sig_shape)
        sig_dims = len(first_file.sig_shape)
        self._meta = DataSetMeta(
            shape=Shape(shape, sig_dims=sig_dims),
            raw_dtype=first_file.native_dtype,
        )
        return self
Example #8
0
    def get_tiles(self, crop_to=None, full_frames=False):
        stackheight = self.tileshape.nav.size

        num_tiles = self.partfile.fields['num_images'] // stackheight

        tshape = self.tileshape.flatten_nav()
        sig_origin = (0, 0)
        if crop_to is not None and tshape.sig != crop_to.shape.sig:
            tshape = Shape(tuple(tshape.nav) + tuple(crop_to.shape.sig),
                           sig_dims=tshape.sig.dims)
            sig_origin = crop_to.origin[1:]
        data = np.ndarray(tshape, dtype=self.dtype)
        for t in range(num_tiles):
            tile_slice = Slice(
                origin=(t * stackheight + self.slice.origin[0], ) + sig_origin,
                shape=tshape)
            if crop_to is not None:
                intersection = tile_slice.intersection_with(crop_to)
                if intersection.is_null():
                    continue
            self.partfile.read_frames(num=stackheight,
                                      offset=t * stackheight,
                                      out=data,
                                      crop_to=crop_to)
            assert all(
                [item > 0 for item in tile_slice.shift(self.slice).shape])
            assert all(
                [item >= 0 for item in tile_slice.shift(self.slice).origin])

            yield DataTile(data=data, tile_slice=tile_slice)
Example #9
0
def test_partition_shape_4():
    assert get_partition_shape(Shape((128, 15, 15, 16, 16), sig_dims=2),
                               target_size_items=15 * 512) == ((
                                   1,
                                   2,
                                   15,
                               ))
Example #10
0
    def get_partitions(self):
        num_frames = self.shape.nav.size
        f_per_part = num_frames // self._get_num_partitions()

        c0 = itertools.count(start=0, step=f_per_part)
        c1 = itertools.count(start=f_per_part, step=f_per_part)
        for (start, stop) in zip(c0, c1):
            if start >= num_frames:
                break
            stop = min(stop, num_frames)
            part_slice = Slice(origin=(
                start,
                0,
                0,
            ),
                               shape=Shape(
                                   ((stop - start), ) + tuple(self.shape.sig),
                                   sig_dims=self.shape.sig.dims))
            yield SERPartition(
                meta=self._meta,
                partition_slice=part_slice,
                reader=SERReader(path=self._path, emipath=self._emipath),
                start_frame=start,
                num_frames=stop - start,
            )
Example #11
0
def test_apply_mask_job(default_k2is, lt_ctx):
    mask = np.ones((1860, 2048))

    tileshape = Shape(
        (16, 930, 16),
        sig_dims=2,
    )
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=default_k2is.shape,
    )

    job = ApplyMasksJob(
        dataset=default_k2is, mask_factories=[lambda: mask],
        tiling_scheme=tiling_scheme,
    )
    out = job.get_result_buffer()

    executor = InlineJobExecutor()

    for tiles in executor.run_job(job):
        for tile in tiles:
            tile.reduce_into_result(out)

    results = lt_ctx.run(job)
    assert results[0].shape == (34 * 35,)
    # there should be _something_ in each result pixel
    for px in results[0].reshape((-1,)):
        assert not np.isclose(px, 0)
Example #12
0
def test_missing_frames(lt_ctx, raw_data_8x8x8x8_path, io_backend):
    ds = RawFileDataSet(
        path=raw_data_8x8x8x8_path,
        nav_shape=(10, 8),
        sig_shape=(8, 8),
        dtype="float32",
        io_backend=io_backend,
    )
    ds.set_num_cores(4)
    ds = ds.initialize(lt_ctx.executor)

    tileshape = Shape((4, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    for p in ds.get_partitions():
        for t in p.get_tiles(tiling_scheme=tiling_scheme):
            pass

    assert p._start_frame == 60
    assert p._num_frames == 20
    assert p.slice.origin == (60, 0, 0)
    assert p.slice.shape[0] == 20
    assert t.tile_slice.origin == (60, 0, 0)
    assert t.tile_slice.shape[0] == 4
Example #13
0
    def get_tiles(self, tiling_scheme, dest_dtype="float32", roi=None):
        shape = Shape((1, ) + tuple(self.shape.sig),
                      sig_dims=self.shape.sig.dims)

        self.validate_tiling_scheme(tiling_scheme)

        start = self._start_frame
        stop = start + self._num_frames
        if roi is None:
            indices = np.arange(start, stop)
            offset = start
        else:
            indices = _roi_to_indices(roi, start, stop)
            offset = np.count_nonzero(roi.reshape((-1, ))[:start])

        with fileSER(self._path) as f:
            for num, idx in enumerate(indices):
                tile_slice = Slice(origin=(num + offset, 0, 0), shape=shape)
                data, metadata = f.getDataset(int(idx))
                if data.dtype != np.dtype(dest_dtype):
                    data = data.astype(dest_dtype)
                data = data.reshape(shape)
                self._preprocess(data, tile_slice)
                yield DataTile(
                    data,
                    tile_slice=tile_slice,
                    scheme_idx=0,
                )
Example #14
0
    def get_partitions(self):
        ds_shape = Shape(self.shape, sig_dims=self.sig_dims)
        ds_slice = Slice(origin=[0] * len(self.shape), shape=ds_shape)
        target_size = self.target_size
        if target_size is None:
            if self._compression is None:
                target_size = 512 * 1024 * 1024
            else:
                target_size = 256 * 1024 * 1024
        partition_shape = self.partition_shape(
            target_size=target_size,
            dtype=self.dtype,
        ) + tuple(self.shape.sig)

        # if the data is chunked in the navigation axes, choose a compatible
        # partition size (even important for non-compressed data!)
        chunks = self._chunks
        if chunks is not None and not _have_contig_chunks(chunks, ds_shape):
            partition_shape = _partition_shape_for_chunking(chunks, ds_shape)

        for pslice in ds_slice.subslices(partition_shape):
            yield H5Partition(
                meta=self._meta,
                reader=self.get_reader(),
                partition_slice=pslice.flatten_nav(self.shape),
                slice_nd=pslice,
                io_backend=self.get_io_backend(),
                chunks=self._chunks,
            )
Example #15
0
def test_for_datatile_2(masks):
    tile = DataTile(
        tile_slice=Slice(origin=(0, 0, 0), shape=Shape((2 * 2, 10, 10), sig_dims=2)),
        data=np.ones((2 * 2, 10, 10))
    )
    slice_ = masks.get_masks_for_slice(tile.tile_slice)
    assert slice_.shape == (100, 5)
Example #16
0
def test_simple(default_cached_ds):
    parts = list(default_cached_ds.get_partitions())
    p = parts[0]

    datadir = default_cached_ds._cache_path
    default_raw = default_cached_ds._source_ds

    tileshape = Shape((16, ) + tuple(default_raw.shape.sig),
                      sig_dims=default_raw.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=default_raw.shape,
    )

    print(datadir, os.listdir(datadir))

    print(p)

    t_cache = next(p.get_tiles(tiling_scheme=tiling_scheme))
    t_orig = next(
        next(default_raw.get_partitions()).get_tiles(
            tiling_scheme=tiling_scheme))

    print(t_cache)
    print(t_orig)
    assert np.allclose(t_cache.data, t_orig.data)

    for p in default_cached_ds.get_partitions():
        for tile in p.get_tiles(tiling_scheme=tiling_scheme):
            pass
Example #17
0
 def __init__(self, tileshape=None, num_partitions=None, data=None, sig_dims=2,
              check_cast=True, crop_frames=False, tiledelay=None, datashape=None):
     # For HTTP API testing purposes: Allow to create empty dataset with given shape
     if data is None:
         assert datashape is not None
         data = np.zeros(datashape, dtype=np.float32)
     if num_partitions is None:
         num_partitions = psutil.cpu_count(logical=False)
     if tileshape is None:
         sig_shape = data.shape[-sig_dims:]
         target = 2**20
         framesize = np.prod(sig_shape)
         framecount = max(1, min(np.prod(data.shape[:-sig_dims]), int(target / framesize)))
         tileshape = (framecount, ) + sig_shape
     assert len(tileshape) == sig_dims + 1
     self.data = data
     self.tileshape = Shape(tileshape, sig_dims=sig_dims)
     self.num_partitions = num_partitions
     self.sig_dims = sig_dims
     self._meta = DataSetMeta(
         shape=self.shape,
         raw_dtype=self.data.dtype,
     )
     self._check_cast = check_cast
     self._crop_frames = crop_frames
     self._tiledelay = tiledelay
Example #18
0
async def test_fd_limit(async_executor):
    import resource
    import psutil
    # set soft limit, throws errors but allows to raise it
    # again afterwards:
    proc = psutil.Process()
    oldlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    resource.setrlimit(resource.RLIMIT_NOFILE,
                       (proc.num_fds() + 24, oldlimit[1]))

    print("fds", proc.num_fds())

    try:
        data = _mk_random(size=(1, 16, 16), dtype='<u2')
        dataset = MemoryDataSet(data=data,
                                tileshape=(1, 16, 16),
                                num_partitions=1)

        slice_ = Slice(origin=(0, 0, 0), shape=Shape((1, 16, 16), sig_dims=2))
        job = PickFrameJob(dataset=dataset, slice_=slice_)

        for i in range(32):
            print(i)
            print(proc.num_fds())
            async for tiles in async_executor.run_job(job, cancel_id="42"):
                pass
    finally:
        resource.setrlimit(resource.RLIMIT_NOFILE, oldlimit)
Example #19
0
    def _do_initialize(self):
        self._headers = self._preread_headers()
        self._files_sorted = list(
            sorted(self._files(),
                   key=lambda f: f.fields['sequence_first_image']))

        try:
            first_file = self._files_sorted[0]
        except IndexError:
            raise DataSetException("no files found")
        if self._scan_size is None:
            hdr = read_hdr_file(self._path)
            self._scan_size = scan_size_from_hdr(hdr)
        shape = Shape(self._scan_size + first_file.fields['image_size'],
                      sig_dims=self._sig_dims)
        dtype = first_file.fields['dtype']
        meta = DataSetMeta(shape=shape,
                           raw_dtype=dtype,
                           iocaps={"FRAME_CROPS", "MMAP", "FULL_FRAMES"})
        if first_file.fields['mib_dtype'] == "r64":
            meta.iocaps.remove("MMAP")
        self._meta = meta
        self._total_filesize = sum(
            os.stat(path).st_size for path in self._filenames())
        self._sequence_start = first_file.fields['sequence_first_image']
        self._files_sorted = list(
            sorted(self._files(),
                   key=lambda f: f.fields['sequence_first_image']))
        return self
Example #20
0
    def _get_tiles_w_copy(
        self, tiling_scheme, fileset, read_ranges, read_dtype, native_dtype,
        decoder=None, corrections=None,
    ):
        if decoder is None:
            decoder = DtypeConversionDecoder()
        decode = decoder.get_decode(
            native_dtype=np.dtype(native_dtype),
            read_dtype=np.dtype(read_dtype),
        )
        r_n_d = self._r_n_d = self.get_read_and_decode(decode)

        native_dtype = decoder.get_native_dtype(native_dtype, read_dtype)
        mmaps = List()
        for fh in fileset:
            mmaps.append(np.frombuffer(fh.raw_mmap(), dtype=np.uint8))

        sig_dims = tiling_scheme.shape.sig.dims
        ds_shape = np.array(tiling_scheme.dataset_shape)

        largest_slice = sorted([
            (np.prod(s_.shape), s_)
            for _, s_ in tiling_scheme.slices
        ], key=lambda x: x[0], reverse=True)[0][1]

        buf_shape = (tiling_scheme.depth,) + tuple(largest_slice.shape)
        need_clear = decoder.do_clear()

        with self._buffer_pool.empty(buf_shape, dtype=read_dtype) as out_decoded:
            out_decoded = out_decoded.reshape((-1,))
            slices = read_ranges[0]
            shape_prods = np.prod(slices[..., 1, :], axis=1)
            ranges = read_ranges[1]
            scheme_indices = read_ranges[2]
            for idx in range(slices.shape[0]):
                origin = slices[idx, 0]
                shape = slices[idx, 1]
                tile_slice = Slice(
                    origin=origin,
                    shape=Shape(shape, sig_dims=sig_dims)
                )
                tile_ranges = ranges[idx]
                scheme_idx = scheme_indices[idx]
                # if idx < slices.shape[0] - 1:
                #     self._prefetch_for_tile(fileset, ranges[idx + 1])
                #     pass
                out_cut = out_decoded[:shape_prods[idx]].reshape((shape[0], -1))
                data = r_n_d(
                    idx,
                    mmaps, sig_dims, tile_ranges,
                    out_cut, native_dtype, do_zero=need_clear,
                    origin=origin, shape=shape, ds_shape=ds_shape,
                )
                data = data.reshape(shape)
                self.preprocess(data, tile_slice, corrections)
                yield DataTile(
                    data,
                    tile_slice=tile_slice,
                    scheme_idx=scheme_idx,
                )
Example #21
0
def test_missing_frames(lt_ctx, io_backend):
    """
    there can be some frames missing at the end
    """
    # one full row of additional frames in the data set than the number of files
    nav_shape = (3, 5)

    ds = lt_ctx.load(
        "dm",
        files=list(sorted(glob(os.path.join(DM_TESTDATA_PATH, '*.dm4')))),
        nav_shape=nav_shape,
        io_backend=io_backend,
    )

    ds.set_num_cores(4)

    tileshape = Shape((1, ) + tuple(ds.shape.sig), sig_dims=ds.shape.sig.dims)
    tiling_scheme = TilingScheme.make_for_shape(
        tileshape=tileshape,
        dataset_shape=ds.shape,
    )

    for p in ds.get_partitions():
        for t in p.get_tiles(tiling_scheme=tiling_scheme):
            pass

    assert p._start_frame == 12
    assert p._num_frames == 3
    assert p.slice.origin == (12, 0, 0)
    assert p.slice.shape[0] == 3
    assert t.tile_slice.origin == (9, 0, 0)
    assert t.tile_slice.shape[0] == 1
Example #22
0
    def _do_initialize(self):
        self._filenames = list(sorted(glob.glob(self._pattern())))
        self._hdr_info = self._read_hdr_info()
        self._headers = [
            _read_file_header(path)
            for path in self._files()
        ]
        header = self._headers[0]
        raw_frame_size = header['height'], header['width']
        # frms6 frames are folded in a specific way, this is the shape after unfolding:
        frame_size = 2 * header['height'], header['width'] // 2
        assert header['width'] % 2 == 0
        hdr = self._get_hdr_info()
        bin_factor = hdr['readoutmode']['bin']
        if bin_factor > 1:
            frame_size = (frame_size[0] * bin_factor, frame_size[1])

        sig_dims = 2  # FIXME: is there a different cameraMode that doesn't output 2D signals?
        preferred_dtype = np.dtype("<u2")
        if self._enable_offset_correction:
            preferred_dtype = np.dtype("float32")
        self._meta = DataSetMeta(
            raw_dtype=np.dtype("<u2"),
            dtype=preferred_dtype,
            metadata={'raw_frame_size': raw_frame_size},
            shape=Shape(tuple(hdr['stemimagesize']) + frame_size, sig_dims=sig_dims),
        )
        self._dark_frame = self._get_dark_frame()
        self._gain_map = self._get_gain_map()
        self._total_filesize = sum(
            os.stat(path).st_size
            for path in self._files()
        )
        return self
Example #23
0
 def _read_full_frames(self, crop_to=None, dest_dtype="float32", roi=None):
     with contextlib.ExitStack() as stack:
         frame_buf = zeros_aligned((1, 1860, 2048), dtype=dest_dtype)
         open_sectors = [
             stack.enter_context(sector) for sector in self._sectors
         ]
         frame_offset = 0
         if roi is not None:
             roi = roi.reshape((-1, ))
             frame_offset = np.count_nonzero(roi[:self._start_frame])
         frames_read = 0
         for frame in range(self._start_frame,
                            self._start_frame + self._num_frames):
             if roi is not None and not roi[frame]:
                 continue
             origin = frame
             if roi is not None:
                 origin = frame_offset + frames_read
             tile_slice = Slice(
                 origin=(origin, 0, 0),
                 shape=Shape(frame_buf.shape, sig_dims=2),
             )
             if crop_to is not None:
                 intersection = tile_slice.intersection_with(crop_to)
                 if intersection.is_null():
                     continue
             for s in open_sectors:
                 s.read_full_frame(
                     frame=frame,
                     buf=frame_buf[:, :,
                                   s.idx * SECTOR_SIZE[1]:(s.idx + 1) *
                                   SECTOR_SIZE[1]])
             yield DataTile(data=frame_buf, tile_slice=tile_slice)
             frames_read += 1
Example #24
0
 def _get_tiles_fullframe(self,
                          tiling_scheme,
                          dest_dtype="float32",
                          roi=None):
     # assert len(tiling_scheme) == 1
     logger.debug("reading up to frame idx %d for this partition",
                  self._end_idx)
     pool = self._data_source.pool.get_impl(
         read_upto_frame=self._end_idx,
         # chunk_size=11,
         chunk_size=tiling_scheme.depth,
     )
     to_read = self._end_idx - self._start_idx
     with pool:
         while to_read > 0:
             # logger.debug(
             #     "LivePartition.get_tiles: to_read=%d, start_idx=%d end_idx=%d",
             #     to_read, self._start_idx, self._end_idx,
             # )
             with pool.get_result() as res_wrapped:
                 frames_in_tile = res_wrapped.stop - res_wrapped.start
                 tile_shape = Shape(
                     (frames_in_tile, ) + tuple(tiling_scheme[0].shape),
                     sig_dims=2)
                 tile_slice = Slice(
                     origin=(res_wrapped.start, ) + (0, 0),
                     shape=tile_shape,
                 )
                 yield DataTile(
                     res_wrapped.buf,
                     tile_slice=tile_slice,
                     scheme_idx=0,
                 )
                 to_read -= frames_in_tile
     logger.debug("LivePartition.get_tiles: end of method")
Example #25
0
    def _get_tiles_with_roi(self, roi, dest_dtype):
        flat_roi = roi.reshape((-1,))
        roi = roi.reshape(self.meta.shape.nav)

        result_shape = Shape((1,) + tuple(self.meta.shape.sig), sig_dims=self.meta.shape.sig.dims)
        sig_origin = tuple([0] * self.meta.shape.sig.dims)
        frames_read = 0
        start_at_frame = self.slice.origin[0]
        frame_offset = np.count_nonzero(flat_roi[:start_at_frame])

        indices = _roi_to_nd_indices(roi, self.slice_nd)

        with self.reader.get_h5ds() as h5ds:
            for idx in indices:
                tile_slice = Slice(
                    origin=(frames_read + frame_offset,) + sig_origin,
                    shape=result_shape,
                )
                yield DataTile(
                    h5ds[idx].reshape(result_shape),
                    tile_slice=tile_slice,
                    # there is only a single slice in the tiling scheme, so our
                    # scheme_idx is constant 0
                    scheme_idx=0,
                )
                frames_read += 1
Example #26
0
 def get_tiles(self, tiling_scheme, dest_dtype="float32", roi=None):
     yield from self._get_tiles_fullframe(tiling_scheme, dest_dtype, roi)
     return
     # assert len(tiling_scheme) == 1
     print(tiling_scheme)
     pool = self._data_source.pool.get_impl(
         read_upto_frame=self._end_idx,
         chunk_size=tiling_scheme.depth,
     )
     to_read = int(self._end_idx - self._start_idx)
     nav_slices_raw = [(..., ) + slice_.get(sig_only=True)
                       for idx, slice_ in tiling_scheme.slices]
     with pool:
         while to_read > 0:
             with pool.get_result() as res_wrapped:
                 frames_in_tile = res_wrapped.stop - res_wrapped.start
                 for (idx,
                      slice_), nav_slice_raw in zip(tiling_scheme.slices,
                                                    nav_slices_raw):
                     tile_shape = Shape(
                         (frames_in_tile, ) + tuple(slice_.shape),
                         sig_dims=2)
                     tile_slice = Slice(
                         origin=(res_wrapped.start, ) +
                         tuple(slice_.origin),
                         shape=tile_shape,
                     )
                     sliced_res = res_wrapped.buf[nav_slice_raw]
                     yield DataTile(sliced_res,
                                    tile_slice=tile_slice,
                                    scheme_idx=idx)
                 to_read -= frames_in_tile
Example #27
0
def test_for_datatile_with_frame_origin(masks):
    tile = DataTile(tile_slice=Slice(origin=(10, 10, 10, 10),
                                     shape=Shape((2, 2, 1, 5), sig_dims=2)),
                    data=np.ones((2, 2, 1, 5)))
    slice_ = masks.get_masks_for_slice(tile.tile_slice)
    print(slice_)
    np.allclose(
        slice_,
        np.array([
            1,
            0,
            1,
            0,
            10,
            1,
            0,
            1,
            0,
            11,
            1,
            0,
            1,
            0,
            12,
            1,
            0,
            1,
            0,
            13,
            1,
            0,
            1,
            0,
            14,
        ]).reshape((5, 5)))
Example #28
0
def test_get_signal_only():
    s = Slice(origin=(0, 0, 0, 0), shape=Shape((1, 1, 1, 1), sig_dims=2))

    assert s.get(sig_only=True) == (
        slice(0, 1),
        slice(0, 1),
    )
Example #29
0
def test_mask_caching_1():
    input_masks = [
        lambda: np.ones((128, 128)),
        lambda: np.zeros((128, 128)),
    ]
    mask_container = MaskContainer(mask_factories=input_masks, dtype="float32")

    shape = Shape((16 * 16, 128, 128), sig_dims=2)
    slice_ = Slice(origin=(0, 0, 0), shape=shape)
    mask_container.get(slice_)

    key = (mask_container.dtype, False, True, 'numpy')

    cache_info = mask_container._get_masks_for_slice[key].cache_info()
    assert cache_info.hits == 0
    assert cache_info.misses == 1

    mask_container.get(slice_)

    cache_info = mask_container._get_masks_for_slice[key].cache_info()
    assert cache_info.hits == 1
    assert cache_info.misses == 1

    slice_ = Slice(origin=(1, 0, 0), shape=shape)

    mask_container.get(slice_)

    cache_info = mask_container._get_masks_for_slice[key].cache_info()
    assert cache_info.hits == 2
    assert cache_info.misses == 1
Example #30
0
 def initialize(self, executor):
     self._header = h = executor.run_function(self._read_header)
     NY = int(h['NY'])
     NX = int(h['NX'])
     DP_SZ = int(h['DP_SZ'])
     self._image_count = NY * NX
     if self._nav_shape is None:
         self._nav_shape = (NY, NX)
     if self._sig_shape is None:
         self._sig_shape = (DP_SZ, DP_SZ)
     elif int(prod(self._sig_shape)) != (DP_SZ * DP_SZ):
         raise DataSetException("sig_shape must be of size: %s" %
                                (DP_SZ * DP_SZ))
     self._nav_shape_product = int(prod(self._nav_shape))
     self._sync_offset_info = self.get_sync_offset_info()
     self._shape = Shape(self._nav_shape + self._sig_shape,
                         sig_dims=len(self._sig_shape))
     self._meta = DataSetMeta(
         shape=self._shape,
         raw_dtype=np.dtype("u1"),
         sync_offset=self._sync_offset,
         image_count=self._image_count,
     )
     self._filesize = executor.run_function(self._get_filesize)
     return self