Example #1
0
    def eval_prob(self,
                  prob,
                  disp_save_path,
                  display=False,
                  interpolate=False):
        prob = np.reshape(prob, [self.h, self.w, self.d, 2])
        prob = fte.get_cost(prob)
        probr = fte.get_right_cost(prob)

        self.do_post(prob, probr, disp_save_path, display, interpolate)
Example #2
0
File: test.py Project: topriss/CBMV
    def eval_prob(self,
                  prob,
                  disp_save_path,
                  display=False,
                  interpolate=False,
                  isLocalExp=True):
        prob = np.reshape(prob, [self.h, self.w, self.d, 2])
        prob = fte.get_cost(prob)  # now in shape [imgH, imgW, ndisp]

        probr = fte.get_right_cost(prob)  # now in shape [imgH, imgW, ndisp]
        #print (prob.shape, probr.shape)
        self.do_post(prob, probr, disp_save_path, display, interpolate,
                     isLocalExp)
Example #3
0
    def __extract_features_lr(self, census, ncc, sobel, sad):

        dims = census.shape

        censusr = fte.get_right_cost(census)
        census = np.reshape(census, [dims[0] * dims[1], dims[2]])
        censusr = np.reshape(censusr, [dims[0] * dims[1], dims[2]])

        nccr = fte.get_right_cost(ncc)
        ncc = np.reshape(ncc, [dims[0] * dims[1], dims[2]])
        nccr = np.reshape(nccr, [dims[0] * dims[1], dims[2]])

        sobelr = fte.get_right_cost(sobel)
        sobel = np.reshape(sobel, [dims[0] * dims[1], dims[2]])
        sobelr = np.reshape(sobelr, [dims[0] * dims[1], dims[2]])

        sadr = fte.get_right_cost(sad)
        sad = np.reshape(sad, [dims[0] * dims[1], dims[2]])
        sadr = np.reshape(sadr, [dims[0] * dims[1], dims[2]])

        features = np.empty((dims[0] * dims[1] * dims[2], 20))

        features[:, 0] = np.reshape(census, [dims[0] * dims[1] * dims[2]])
        features[:, 1] = np.reshape(ncc, [dims[0] * dims[1] * dims[2]])
        features[:, 2] = np.reshape(sobel, [dims[0] * dims[1] * dims[2]])
        features[:, 3] = np.reshape(sad, [dims[0] * dims[1] * dims[2]])

        features[:, 4] = np.reshape(fte.extract_ratio(census, .01),
                                    [dims[0] * dims[1] * dims[2]])
        features[:, 5] = np.reshape(fte.extract_ratio(ncc, 1.01),
                                    [dims[0] * dims[1] * dims[2]])
        features[:, 6] = np.reshape(fte.extract_ratio(sobel, .01),
                                    [dims[0] * dims[1] * dims[2]])
        features[:, 7] = np.reshape(fte.extract_ratio(sad, .01),
                                    [dims[0] * dims[1] * dims[2]])

        features[:, 8] = np.reshape(
            fte.extract_likelihood(census, self.__cens_sigma),
            [dims[0] * dims[1] * dims[2]])
        features[:,
                 9] = np.reshape(fte.extract_likelihood(ncc, self.__ncc_sigma),
                                 [dims[0] * dims[1] * dims[2]])
        features[:, 10] = np.reshape(
            fte.extract_likelihood(sobel, self.__sad_sigma),
            [dims[0] * dims[1] * dims[2]])
        features[:, 11] = np.reshape(
            fte.extract_likelihood(sad, self.__sad_sigma),
            [dims[0] * dims[1] * dims[2]])

        r_pkrn = fte.extract_ratio(censusr, .01)
        r_pkrn = np.reshape(r_pkrn, [dims[0], dims[1], dims[2]])
        features[:, 12] = np.reshape(fte.get_left_cost(r_pkrn),
                                     [dims[0] * dims[1] * dims[2]])

        r_aml = fte.extract_likelihood(censusr, self.__cens_sigma)
        r_aml = np.reshape(r_aml, [dims[0], dims[1], dims[2]])
        features[:, 16] = np.reshape(fte.get_left_cost(r_aml),
                                     [dims[0] * dims[1] * dims[2]])
        del censusr

        r_pkrn = fte.extract_ratio(nccr, 1.01)
        r_pkrn = np.reshape(r_pkrn, [dims[0], dims[1], dims[2]])
        features[:, 13] = np.reshape(fte.get_left_cost(r_pkrn),
                                     [dims[0] * dims[1] * dims[2]])

        r_aml = fte.extract_likelihood(nccr, self.__ncc_sigma)
        r_aml = np.reshape(r_aml, [dims[0], dims[1], dims[2]])
        features[:, 17] = np.reshape(fte.get_left_cost(r_aml),
                                     [dims[0] * dims[1] * dims[2]])
        del nccr

        r_pkrn = fte.extract_ratio(sobelr, .01)
        r_pkrn = np.reshape(r_pkrn, [dims[0], dims[1], dims[2]])
        features[:, 14] = np.reshape(fte.get_left_cost(r_pkrn),
                                     [dims[0] * dims[1] * dims[2]])

        r_aml = fte.extract_likelihood(sobelr, self.__sad_sigma)
        r_aml = np.reshape(r_aml, [dims[0], dims[1], dims[2]])
        features[:, 18] = np.reshape(fte.get_left_cost(r_aml),
                                     [dims[0] * dims[1] * dims[2]])
        del sobelr

        r_pkrn = fte.extract_ratio(sadr, .01)
        r_pkrn = np.reshape(r_pkrn, [dims[0], dims[1], dims[2]])
        features[:, 15] = np.reshape(fte.get_left_cost(r_pkrn),
                                     [dims[0] * dims[1] * dims[2]])

        r_aml = fte.extract_likelihood(sadr, self.__sad_sigma)
        r_aml = np.reshape(r_aml, [dims[0], dims[1], dims[2]])
        features[:, 19] = np.reshape(fte.get_left_cost(r_aml),
                                     [dims[0] * dims[1] * dims[2]])
        del sadr

        return features
Example #4
0
    def __postprocessing_mem_interp(self,
                                    imgl,
                                    imgr,
                                    cost,
                                    direction,
                                    display=False):

        r_cost = fte.get_right_cost(cost)
        post.InitCUDA()
        start = time.time()

        cross_array_init = np.zeros(
            (4, imgl.shape[0], imgl.shape[1])).astype(np.float32)
        imgl_d = post.CUDA_float_array(imgl)
        imgr_d = post.CUDA_float_array(imgr)

        rightc = np.zeros((4, imgr.shape[0], imgr.shape[1])).astype(np.float32)
        leftc_d = post.CUDA_float_array(cross_array_init)
        rightc_d = post.CUDA_float_array(cross_array_init)

        post.cross(imgl_d, leftc_d, self.__L1, self.__tau1)
        post.cross(imgr_d, rightc_d, self.__L1, self.__tau1)

        ###compute right disparity
        r_cost_d = post.CUDA_double_array(r_cost)
        temp_cost_d = post.CUDA_double_array(cost)
        tmp = np.zeros((cost.shape[1], cost.shape[2]))
        tmp_d = post.CUDA_double_array(tmp)

        post.swap_axis_back(r_cost_d, temp_cost_d)
        cc = r_cost_d.get_array()
        post.CUDA_copy_double(temp_cost_d, r_cost_d)

        for i in range(0, self.__cbca_i1):
            post.cbca(rightc_d, leftc_d, r_cost_d, temp_cost_d, -1 * direction)
            post.CUDA_copy_double(temp_cost_d, r_cost_d)

        if display:
            print "CBCA 1 right"
            cc = r_cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        post.swap_axis(r_cost_d, temp_cost_d)
        post.CUDA_copy_double(temp_cost_d, r_cost_d)

        for i in range(0, self.__sgm_i):
            temp_cost_d.set_to_zero()
            tmp_d.set_to_zero()
            post.sgm(imgl_d, imgr_d, r_cost_d, temp_cost_d, tmp_d, self.__pi1,
                     self.__pi2, self.__tau_so, self.__alpha1, self.__sgm_q1,
                     self.__sgm_q2, -1 * direction)
            post.CUDA_divide_double(temp_cost_d, 4)
            post.CUDA_copy_double(temp_cost_d, r_cost_d)

        post.swap_axis_back(r_cost_d, temp_cost_d)
        post.CUDA_copy_double(temp_cost_d, r_cost_d)

        if display:
            print "SGM right"
            cc = r_cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        for i in range(0, self.__cbca_i2):
            post.cbca(rightc_d, leftc_d, r_cost_d, temp_cost_d, -1 * direction)

            post.CUDA_copy_double(temp_cost_d, r_cost_d)

        if display:
            print "CBCA2 right"
            cc = r_cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        del temp_cost_d
        cc = r_cost_d.get_array()
        r_disp = np.argmin(cc, axis=0).astype(np.float32)
        del cc
        del r_cost_d

        r_disp_d = post.CUDA_float_array(r_disp)

        cost_d = post.CUDA_double_array(cost)
        temp_cost_d = post.CUDA_double_array(cost)

        post.swap_axis_back(cost_d, temp_cost_d)
        post.CUDA_copy_double(temp_cost_d, cost_d)

        for i in range(0, self.__cbca_i1):
            post.cbca(leftc_d, rightc_d, cost_d, temp_cost_d, direction)
            post.CUDA_copy_double(temp_cost_d, cost_d)
        if display:
            print "CBCA 1"
            cc = cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        post.swap_axis(cost_d, temp_cost_d)
        post.CUDA_copy_double(temp_cost_d, cost_d)

        tmp = np.zeros((cost.shape[1], cost.shape[2]))
        tmp_d = post.CUDA_double_array(tmp)

        for i in range(0, self.__sgm_i):
            temp_cost_d.set_to_zero()
            tmp_d.set_to_zero()
            post.sgm(imgl_d, imgr_d, cost_d, temp_cost_d, tmp_d, self.__pi1,
                     self.__pi2, self.__tau_so, self.__alpha1, self.__sgm_q1,
                     self.__sgm_q2, direction)
            post.CUDA_divide_double(temp_cost_d, 4)
            post.CUDA_copy_double(temp_cost_d, cost_d)

        post.swap_axis_back(cost_d, temp_cost_d)
        post.CUDA_copy_double(temp_cost_d, cost_d)

        if display:
            print "SGM"
            cc = cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        for i in range(0, self.__cbca_i2):
            post.cbca(leftc_d, rightc_d, cost_d, temp_cost_d, direction)

            post.CUDA_copy_double(temp_cost_d, cost_d)

        if display:
            print "CBCA2"
            cc = cost_d.get_array()
            ddisp = np.argmin(cc, axis=0)
            pfm.show(ddisp)

        cc = cost_d.get_array()
        disp_l = np.argmin(cc, axis=0).astype(np.float32)
        out_s = cc.shape[0]
        del cc

        disp_d = post.CUDA_float_array(disp_l)
        disp_temp = post.CUDA_float_array(disp_l)

        post.subpixel_enchancement(disp_d, cost_d, disp_temp)

        outlier = np.zeros(
            (r_disp.shape[0], r_disp.shape[1])).astype(np.float32)
        outlier_d = post.CUDA_float_array(outlier)
        post.outlier_detection(disp_d, r_disp_d, outlier_d, out_s)

        post.interpolate_mismatch(disp_d, outlier_d, disp_temp)
        post.CUDA_copy_float(disp_temp, disp_d)

        post.interpolate_occlusion(disp_d, outlier_d, disp_temp)
        post.CUDA_copy_float(disp_temp, disp_d)

        post.CUDA_copy_float(disp_temp, disp_d)
        if display:
            disp = disp_d.get_array()
            print "Subpixel"
            pfm.show(disp)

        for i in range(0, self.__median_i):
            disp = post.median2d(disp_d, disp_temp, self.__median_w)
            post.CUDA_copy_float(disp_temp, disp_d)

        if display:
            disp = disp_d.get_array()
            print "Median"
            pfm.show(disp)

        post.mean2d(disp_d, disp_temp, self.__gaussian(self.__blur_sigma),
                    self.__blur_t)
        post.CUDA_copy_float(disp_temp, disp_d)

        if display:
            disp = disp_d.get_array()
            print "Bilateral"
            pfm.show(disp)

        disp = disp_d.get_array()

        end = time.time()
        print(end - start)

        return disp
Example #5
0
    def __create_samples_mem(self, iml, imr, index):
        w, h, ndisp = self.__read_calib(index)

        gt = pfm.load(self.__data_path + self.__trainset[index] +
                      "/disp0GT.pfm")[0]

        gt = np.reshape(gt, [gt.shape[0] * gt.shape[1], 1])
        infs = np.concatenate((np.argwhere(gt == np.inf), np.argwhere(gt < 0)),
                              axis=0)
        # infs = np.empty((0,2))
        gt = np.delete(gt, infs[:, 0], axis=0)
        gt = np.round(gt)
        gt = gt.astype(np.int32)
        #print ("loading gt ... gt shape = {}".format(gt.shape))

        random_samples = fte.generate_d_indices(gt, ndisp, 1)
        assert random_samples.shape[
            1] == 3  # here : 3 means 1 positive sample + 2 negative ones;
        samples = np.empty(
            (random_samples.shape[0] * random_samples.shape[1], 21))
        #print ("samples shape = {}".format(samples.shape))
        #print ("staring census ...")

        ################## Census compute ##########################################################
        #print ('w = {}, h = {}, ndisp = {}, censW = {}'.format(w, h, ndisp, self.__censw))
        #print ('last iml = {}, last imr = {}'.format(iml[h-1,w-1], imr[h-1,w-1]))
        costcensus = mtc.census(iml, imr, ndisp,
                                self.__censw).astype(np.float64)
        #print ('costcensus shape = {}'.format(costcensus.shape))
        costcensusR = fte.get_right_cost(costcensus)
        costcensus = np.reshape(
            costcensus,
            [costcensus.shape[0] * costcensus.shape[1], costcensus.shape[2]])
        costcensusR = np.reshape(costcensusR, [
            costcensusR.shape[0] * costcensusR.shape[1], costcensusR.shape[2]
        ])

        costcensus = np.delete(costcensus, infs[:, 0], axis=0)

        samples[:, 0] = fte.get_samples(costcensus, random_samples)
        samples[:, 4] = fte.extract_ratio(costcensus, random_samples, .01)
        samples[:, 8] = fte.extract_likelihood(costcensus, random_samples,
                                               self.__cens_sigma)
        del costcensus
        #print ("census done!")

        r_pkrn = fte.extract_ratio(costcensusR, .01)

        r_pkrn = np.reshape(r_pkrn, [h, w, ndisp])

        r_pkrn = fte.get_left_cost(r_pkrn)
        r_pkrn = np.reshape(
            r_pkrn, [r_pkrn.shape[0] * r_pkrn.shape[1], r_pkrn.shape[2]])
        r_pkrn = np.delete(r_pkrn, infs[:, 0], axis=0)

        samples[:, 12] = fte.get_samples(r_pkrn, random_samples)
        del r_pkrn

        r_aml = fte.extract_likelihood(costcensusR, self.__cens_sigma)
        r_aml = np.reshape(r_aml, [h, w, ndisp])
        r_aml = fte.get_left_cost(r_aml)
        r_aml = np.reshape(r_aml,
                           [r_aml.shape[0] * r_aml.shape[1], r_aml.shape[2]])
        r_aml = np.delete(r_aml, infs[:, 0], axis=0)
        samples[:, 16] = fte.get_samples(r_aml, random_samples)

        del r_aml
        del costcensusR

        ######################################################################################
        ############################### NCC compute ##########################################

        costncc = mtc.nccNister(iml, imr, ndisp, self.__nccw)
        costncc = fte.swap_axes(costncc)
        costnccR = fte.get_right_cost(costncc)
        costncc = np.reshape(
            costncc, [costncc.shape[0] * costncc.shape[1], costncc.shape[2]])
        costnccR = np.reshape(
            costnccR,
            [costnccR.shape[0] * costnccR.shape[1], costnccR.shape[2]])

        costncc = np.delete(costncc, infs[:, 0], axis=0)

        samples[:, 1] = fte.get_samples(costncc, random_samples)
        samples[:, 5] = fte.extract_ratio(costncc, random_samples, 1.01)
        samples[:, 9] = fte.extract_likelihood(costncc, random_samples,
                                               self.__ncc_sigma)
        del costncc

        r_pkrn = fte.extract_ratio(costnccR, 1.01)
        r_pkrn = np.reshape(r_pkrn, [h, w, ndisp])
        r_pkrn = fte.get_left_cost(r_pkrn)
        r_pkrn = np.reshape(
            r_pkrn, [r_pkrn.shape[0] * r_pkrn.shape[1], r_pkrn.shape[2]])
        r_pkrn = np.delete(r_pkrn, infs[:, 0], axis=0)
        samples[:, 13] = fte.get_samples(r_pkrn, random_samples)
        del r_pkrn

        r_aml = fte.extract_likelihood(costnccR, self.__ncc_sigma)
        r_aml = np.reshape(r_aml, [h, w, ndisp])
        r_aml = fte.get_left_cost(r_aml)
        r_aml = np.reshape(r_aml,
                           [r_aml.shape[0] * r_aml.shape[1], r_aml.shape[2]])
        r_aml = np.delete(r_aml, infs[:, 0], axis=0)
        samples[:, 17] = fte.get_samples(r_aml, random_samples)

        del r_aml
        del costnccR

        ######################################################################################
        ############################### Sob compute ##########################################

        sobl = mtc.sobel(iml)
        sobr = mtc.sobel(imr)

        costsob = mtc.sadsob(sobl, sobr, ndisp, 5).astype(np.float64)
        costsob = fte.swap_axes(costsob)
        costsobR = fte.get_right_cost(costsob)
        costsob = np.reshape(
            costsob, [costsob.shape[0] * costsob.shape[1], costsob.shape[2]])
        costsobR = np.reshape(
            costsobR,
            [costsobR.shape[0] * costsobR.shape[1], costsobR.shape[2]])

        costsob = np.delete(costsob, infs[:, 0], axis=0)

        samples[:, 2] = fte.get_samples(costsob, random_samples)
        samples[:, 6] = fte.extract_ratio(costsob, random_samples, .01)
        samples[:, 10] = fte.extract_likelihood(costsob, random_samples,
                                                self.__sad_sigma)
        del costsob

        r_pkrn = fte.extract_ratio(costsobR, .01)
        r_pkrn = np.reshape(r_pkrn, [h, w, ndisp])
        r_pkrn = fte.get_left_cost(r_pkrn)
        r_pkrn = np.reshape(
            r_pkrn, [r_pkrn.shape[0] * r_pkrn.shape[1], r_pkrn.shape[2]])
        r_pkrn = np.delete(r_pkrn, infs[:, 0], axis=0)
        samples[:, 14] = fte.get_samples(r_pkrn, random_samples)
        del r_pkrn

        r_aml = fte.extract_likelihood(costsobR, self.__sad_sigma)
        r_aml = np.reshape(r_aml, [h, w, ndisp])
        r_aml = fte.get_left_cost(r_aml)
        r_aml = np.reshape(r_aml,
                           [r_aml.shape[0] * r_aml.shape[1], r_aml.shape[2]])
        r_aml = np.delete(r_aml, infs[:, 0], axis=0)
        samples[:, 18] = fte.get_samples(r_aml, random_samples)

        del r_aml
        del costsobR

        ######################################################################################
        ############################### Sad compute ##########################################

        costsad = mtc.zsad(iml, imr, ndisp, self.__sadw).astype(np.float64)
        costsad = fte.swap_axes(costsad)
        costsadR = fte.get_right_cost(costsad)
        costsad = np.reshape(
            costsad, [costsad.shape[0] * costsad.shape[1], costsad.shape[2]])
        costsadR = np.reshape(
            costsadR,
            [costsadR.shape[0] * costsadR.shape[1], costsadR.shape[2]])

        costsad = np.delete(costsad, infs[:, 0], axis=0)

        samples[:, 3] = fte.get_samples(costsad, random_samples)
        samples[:, 7] = fte.extract_ratio(costsad, random_samples, .01)
        samples[:, 11] = fte.extract_likelihood(costsad, random_samples,
                                                self.__sad_sigma)
        del costsad

        r_pkrn = fte.extract_ratio(costsadR, .01)
        r_pkrn = np.reshape(r_pkrn, [h, w, ndisp])
        r_pkrn = fte.get_left_cost(r_pkrn)
        r_pkrn = np.reshape(
            r_pkrn, [r_pkrn.shape[0] * r_pkrn.shape[1], r_pkrn.shape[2]])
        r_pkrn = np.delete(r_pkrn, infs[:, 0], axis=0)
        samples[:, 15] = fte.get_samples(r_pkrn, random_samples)
        del r_pkrn

        r_aml = fte.extract_likelihood(costsadR, self.__sad_sigma)
        r_aml = np.reshape(r_aml, [h, w, ndisp])
        r_aml = fte.get_left_cost(r_aml)
        r_aml = np.reshape(r_aml,
                           [r_aml.shape[0] * r_aml.shape[1], r_aml.shape[2]])
        r_aml = np.delete(r_aml, infs[:, 0], axis=0)
        samples[:, 19] = fte.get_samples(r_aml, random_samples)

        del r_aml
        del costsadR

        samples[:, 20] = fte.generate_labels(random_samples)
        return samples