Example #1
0
def model_training(n, i):
    meth = method[i]
    y, x = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/train_%s" % (
        name, meth))
    y_test, x_test = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/test_%s" % (
        name, meth))

    prob = liblinearutil.problem(y, x)
    temp_result = np.empty((14))

    for idx, val in enumerate(cost):
        param = liblinearutil.parameter(' -q -c %f' % (val))
        m = liblinearutil.train(prob, param)
        pred_labels, (temp_result[idx], MSE, SCC), pred_values = liblinearutil.predict(y_test, x_test, m)

    return (i, f_idx, n, temp_result)
Example #2
0
def model_training():
    meth = method[0]
    y, x = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/train_%s" % (
        name, meth))
    y_test, x_test = liblinearutil.svm_read_problem("other_method/kmeans_linear/%s/test_%s" % (
        name, meth))

    prob = liblinearutil.problem(y, x)
    temp_result = np.zeros((12))
    # print(x.shape(1))

    for idx, val in enumerate(cost):
        start = time.time()
        param = liblinearutil.parameter(' -q -c %f' % (val))
        m = liblinearutil.train(prob, param)
        pred_labels, (temp_result[idx], MSE, SCC), pred_values = liblinearutil.predict(y_test, x_test, m)
    # print(temp_result)
    t2 = time.time()-start
    return np.max(temp_result),t2
Example #3
0
def model_training(n, i):
    meth = method[i]
    y, x = liblinearutil.svm_read_problem(
        "other_method/kmeans_linear/%s/original_%s" % (name, meth))
    prob = liblinearutil.problem(y, x)
    temp_result = np.empty((13))

    for idx, val in enumerate(cost):
        param = liblinearutil.parameter('-v 5 -q -c %f' % (val))
        temp_result[idx] = liblinearutil.train(prob, param)
    return (i, f_idx, n, temp_result)