Example #1
0
def test_generate_network_pairs_min_cosine(random_matrix, pairs_min_cosine):
    """
        All cosine scores in outputted array should be strictly higher than
        pairs_min_cosine. Values lower than pairs_min_cosine and negative cosine
        scores should be filtered out.
        
    """

    mzs, matrix = random_matrix

    matrix = matrix.copy()

    matrix[0, 1] = matrix[1, 0] = pairs_min_cosine + 0.1
    matrix[0, 2] = matrix[2, 0] = pairs_min_cosine - 0.1

    interactions = generate_network(matrix, mzs, pairs_min_cosine, 0)

    seen1, seen2 = False, False
    for source, target, delta, cosine in interactions:
        assert cosine > pairs_min_cosine
        assert matrix[source, target] == cosine
        if (source == 0 and target == 1) or (source == 1 and target == 0):
            seen1 = True
        if (source == 0 and target == 2) or (source == 2 and target == 0):
            seen2 = True

    if matrix[0, 1] >= 0:
        assert seen1
    assert not seen2
Example #2
0
def test_generate_network_empty():
    """An empty matrix should not throw an error but return an empty array.
    """

    matrix = np.empty((0, 0), dtype=np.float32)
    interactions = generate_network(matrix, [], 0.65, 10)

    assert interactions.size == 0
Example #3
0
def test_generate_network_high_pairs_min_cosine(random_matrix,
                                                pairs_min_cosine, top_k):
    """
        If pairs_min_cosine is higher than 1, we should get an empty array.
    """

    mzs, matrix = random_matrix

    interactions = generate_network(matrix, mzs, pairs_min_cosine, top_k)

    assert interactions.size == 0
Example #4
0
def test_generate_network_all_zero(random_matrix):
    """
        If all filtering parameters are set to zero, we should get all possibles
        interactions.
    """

    mzs, matrix = random_matrix

    max_size = np.count_nonzero(np.triu(matrix))
    interactions = generate_network(matrix, mzs, 0, 0)

    assert interactions.shape[0] == max_size
Example #5
0
def test_generate_network_high_top_k(random_matrix):
    """
        If top_k is high and pairs_min_cosine is zero, we should get all
        possibles interactions.
    """

    mzs, matrix = random_matrix

    max_size = np.count_nonzero(np.triu(matrix))
    top_k = matrix.shape[0]
    interactions = generate_network(matrix, mzs, 0, top_k)

    assert interactions.shape[0] == max_size
Example #6
0
def test_generate_network_python_cython(random_matrix, pairs_min_cosine,
                                        top_k):
    """Cythonized `generate_network` and it's fallback Python version should
       give the same results.
    """

    mzs, matrix = random_matrix

    interactions_p = generate_network.__wrapped__(matrix, mzs,
                                                  pairs_min_cosine, 0)
    interactions_c = generate_network(matrix, mzs, pairs_min_cosine, 0)

    assert pytest.approx(interactions_p) == interactions_c
Example #7
0
def test_generate_network_self_loop(random_matrix, pairs_min_cosine, top_k):
    """
        Output array should include all self-loops if pairs_min_cosine
        is lower than one and self-loops should have cosine equal to one.
    """

    mzs, matrix = random_matrix

    interactions = generate_network(matrix, mzs, pairs_min_cosine, top_k)
    count = 0
    for source, target, delta, cosine in interactions:
        if source == target:
            count += 1
            assert pytest.approx(cosine) == 1.0

    assert count == matrix.shape[0]
Example #8
0
def test_generate_network_list_larger_than_matrix(random_matrix):
    """
        If list is larger than matrix, only part of the list will be used but
        no error should be thrown.
    """

    mzs, matrix = random_matrix

    mzs = mzs + [1200.14225, 258.4475]
    max_index = len(mzs)

    interactions = generate_network(matrix, mzs, 0, 10)

    assert max_index - 1 not in interactions['Source']
    assert max_index - 1 not in interactions['Target']
    assert max_index - 2 not in interactions['Source']
    assert max_index - 2 not in interactions['Target']
Example #9
0
def test_generate_network_matrix_larger_than_list(random_matrix):
    """
        If matrix is larger than list, only part of the matrix will be used but
        no error should be thrown.
    """

    mzs, matrix = random_matrix

    mzs = mzs[:-2]
    max_index = matrix.shape[0]

    interactions = generate_network(matrix, mzs, 0, 10)

    assert max_index - 1 not in interactions['Source']
    assert max_index - 1 not in interactions['Target']
    assert max_index - 2 not in interactions['Source']
    assert max_index - 2 not in interactions['Target']
Example #10
0
    def run(self):
        def callback(value):
            if value < 0:
                self.max += -value
            else:
                self.updated.emit(value)
            return not self.isStopped()

        # Create edges table (filter score below a threshold and apply TopK algorithm
        interactions = generate_network(self._scores,
                                        self._mzs,
                                        self.options.pairs_min_cosine,
                                        self.options.top_k,
                                        callback=callback)

        # Recreate graph deleting all previously created edges and eventually nodes
        graph = self._graph
        graph.delete_edges(self._graph.es)
        if not self._keep_vertices:
            graph.delete_vertices(graph.vs)
            nodes_idx = np.arange(self._scores.shape[0])
            graph.add_vertices(nodes_idx.tolist())

        # Add edges from edges table
        graph.add_edges(zip(interactions['Source'], interactions['Target']))
        graph.es['__weight'] = interactions['Cosine'].tolist()

        # Set width for all edges based on their weight
        widths = np.array(interactions['Cosine'])
        if widths.size > 0:
            # noinspection PyUnboundLocalVariable
            min_ = max(0, widths.min() - 0.1)
            if min_ != widths.max():
                widths = (RADIUS - 1) * (widths - min_) / (widths.max() -
                                                           min_) + 1
            else:
                widths = RADIUS
        else:
            widths = RADIUS
        graph.es['__width'] = widths

        if not self.isStopped():
            return pd.DataFrame(interactions), graph
        else:
            self.canceled.emit()
Example #11
0
def test_generate_network_python_cython(random_matrix, pairs_min_cosine,
                                        top_k):
    """Cythonized `generate_network` and it's fallback Python version should
       give the same results.
    """

    mzs, matrix = random_matrix

    interactions_p = generate_network.__wrapped__(matrix, mzs,
                                                  pairs_min_cosine, 0)
    interactions_c = generate_network(matrix, mzs, pairs_min_cosine, 0)

    assert interactions_p.shape == interactions_c.shape
    assert interactions_p.dtype == interactions_c.dtype

    for name, (dtype, _) in interactions_c.dtype.fields.items():
        if np.issubdtype(dtype.type, np.floating):
            assert pytest.approx(interactions_p[name]) == interactions_c[name]
        else:
            assert np.array_equal(interactions_p[name], interactions_c[name])