Example #1
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n*start))
    b1 = int(rshift(b, prec - n*start))
    try:
        r = (a1 + 1j * b1)**(1.0/n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec+extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n-1)
        re2 = rshift(re2, (n-1)*prevp - p - extra1)
        im2 = rshift(im2, (n-1)*prevp - p - extra1)
        r4 = (re2*re2 + im2*im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n-1)*lshift(re, p-prevp))//n
        im = (imb + (n-1)*lshift(im, p-prevp))//n
        prevp = p
    return re, im
Example #2
0
def mpc_nthroot_fixed(a, b, n, prec):
    # a, b signed integers at fixed precision prec
    start = 50
    a1 = int(rshift(a, prec - n * start))
    b1 = int(rshift(b, prec - n * start))
    try:
        r = (a1 + 1j * b1)**(1.0 / n)
        re = r.real
        im = r.imag
        # XXX: workaround bug in gmpy
        if abs(re) < 0.1: re = 0
        if abs(im) < 0.1: im = 0
        re = MP_BASE(re)
        im = MP_BASE(im)
    except OverflowError:
        a1 = from_int(a1, start)
        b1 = from_int(b1, start)
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, start)
        re, im = mpc_pow((a1, b1), (nth, fzero), start)
        re = to_int(re)
        im = to_int(im)
    extra = 10
    prevp = start
    extra1 = n
    for p in giant_steps(start, prec + extra):
        # this is slow for large n, unlike int_pow_fixed
        re2, im2 = complex_int_pow(re, im, n - 1)
        re2 = rshift(re2, (n - 1) * prevp - p - extra1)
        im2 = rshift(im2, (n - 1) * prevp - p - extra1)
        r4 = (re2 * re2 + im2 * im2) >> (p + extra1)
        ap = rshift(a, prec - p)
        bp = rshift(b, prec - p)
        rec = (ap * re2 + bp * im2) >> p
        imc = (-ap * im2 + bp * re2) >> p
        reb = (rec << p) // r4
        imb = (imc << p) // r4
        re = (reb + (n - 1) * lshift(re, p - prevp)) // n
        im = (imb + (n - 1) * lshift(im, p - prevp)) // n
        prevp = p
    return re, im
Example #3
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(y1**(1.0/n))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
Example #4
0
def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MP_BASE(int(y1**(1.0/n)))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r
Example #5
0
def log_newton(x, prec):
    extra = 10
    # 40-bit approximation
    fx = math.log(long(x)) - 0.69314718055994529*prec
    r = MP_BASE(fx * 2.0**40)
    prevp = 40
    for p in giant_steps2(40, prec+extra):
        rb = lshift(r, p-prevp)
        # Parameters for exponential series
        if p < 300:
            r = int(2 * p**0.4)
            exp_func = exp_series
        else:
            r = int(0.7 * p**0.5)
            exp_func = exp_series2
        exp_extra = r + 10
        e = exp_func((-rb) << exp_extra, p + exp_extra, r)
        s = ((rshift(x, prec-p)*e)>>(p + exp_extra)) - (1 << p)
        s1 = -((s*s)>>(p+1))
        r = rb + s + s1
        prevp = p
    return r >> extra
Example #6
0
def log_newton(x, prec):
    extra = 10
    # 40-bit approximation
    fx = math.log(long(x)) - 0.69314718055994529 * prec
    r = MP_BASE(fx * 2.0**40)
    prevp = 40
    for p in giant_steps2(40, prec + extra):
        rb = lshift(r, p - prevp)
        # Parameters for exponential series
        if p < 300:
            r = int(2 * p**0.4)
            exp_func = exp_series
        else:
            r = int(0.7 * p**0.5)
            exp_func = exp_series2
        exp_extra = r + 10
        e = exp_func((-rb) << exp_extra, p + exp_extra, r)
        s = ((rshift(x, prec - p) * e) >> (p + exp_extra)) - (1 << p)
        s1 = -((s * s) >> (p + 1))
        r = rb + s + s1
        prevp = p
    return r >> extra
Example #7
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]
Example #8
0
def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    #------------------------------------------------------------------
    # Handle special values
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")
    wp = prec + 20
    #------------------------------------------------------------------
    # Handle log(2^n) = log(n)*2.
    # Here we catch the only possible exact value, log(1) = 0
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    mag = exp+bc
    abs_mag = abs(mag)
    #------------------------------------------------------------------
    # Handle x = 1+eps, where log(x) ~ x. We need to check for
    # cancellation when moving to fixed-point math and compensate
    # by increasing the precision. Note that abs_mag in (0, 1) <=>
    # 0.5 < x < 2 and x != 1
    if abs_mag <= 1:
        # Calculate t = x-1 to measure distance from 1 in bits
        tsign = 1-abs_mag
        if tsign:
            tman = (MP_ONE<<bc) - man
        else:
            tman = man - (MP_ONE<<(bc-1))
        tbc = bitcount(tman)
        cancellation = bc - tbc
        if cancellation > wp:
            t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n')
            return mpf_perturb(t, tsign, prec, rnd)
        else:
            wp += cancellation
        # TODO: if close enough to 1, we could use Taylor series
        # even in the AGM precision range, since the Taylor series
        # converges rapidly
    #------------------------------------------------------------------
    # Another special case:
    # n*log(2) is a good enough approximation
    if abs_mag > 10000:
        if bitcount(abs_mag) > wp:
            return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    #------------------------------------------------------------------
    # General case.
    # Perform argument reduction using log(x) = log(x*2^n) - n*log(2):
    # If we are in the Taylor precision range, choose magnitude 0 or 1.
    # If we are in the AGM precision range, choose magnitude -m for
    # some large m; benchmarking on one machine showed m = prec/20 to be
    # optimal between 1000 and 100,000 digits.
    if wp <= LOG_TAYLOR_PREC:
        m = log_taylor_cached(lshift(man, wp-bc), wp)
        if mag:
            m += mag*ln2_fixed(wp)
    else:
        optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO
        n = optimal_mag - mag
        x = mpf_shift(x, n)
        wp += (-optimal_mag)
        m = -log_agm(to_fixed(x, wp), wp)
        m -= n*ln2_fixed(wp)
    return from_man_exp(m, -wp, prec, rnd)
Example #9
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n) * 1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0: fone}
        m, bin, bin1 = state = [2, MP_BASE(10), MP_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm) - wp
        if m < 6:
            a = MP_ZERO
        else:
            a = bin1
        for j in xrange(1, m // 6 + 1):
            usign, uman, uexp, ubc = u = numbers[m - 6 * j]
            if usign:
                uman = -uman
            s += lshift(a * uman, uexp - sexp)
            # Update inner binomial coefficient
            j6 = 6 * j
            a *= ((m - 5 - j6) * (m - 4 - j6) * (m - 3 - j6) * (m - 2 - j6) *
                  (m - 1 - j6) * (m - j6))
            a //= ((4 + j6) * (5 + j6) * (6 + j6) * (7 + j6) * (8 + j6) *
                   (9 + j6))
        if case == 0: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m - 3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m + 2) * (m + 3)) // (m * (m - 1))
        if m > 6:
            bin1 = bin1 * ((2 + m) * (3 + m)) // ((m - 7) * (m - 6))
        state[:] = [m, bin, bin1]