Example #1
0
def pot_to_requiv_contact(pot, q, sma, compno=1):
    """
    """
    logger.debug(
        "pot_to_requiv_contact(pot={}, q={}, sma={}, compno={})".format(
            pot, q, sma, compno))
    d = 1.
    F = 1.
    crit_pots = libphoebe.roche_critical_potential(q, d, F)
    crit_pot_L1 = crit_pots['L1']
    crit_pot_L23 = max(crit_pots['L2'], crit_pots['L3'])
    if pot > crit_pot_L1:
        raise ValueError("potential > L1 critical value")
    if pot < crit_pot_L23:
        raise ValueError("potential < L2/L3 critical value")

    try:
        logger.debug(
            "libphoebe.roche_contact_neck_min(pi/2, q={}, d={}, pot={})".
            format(q, d, pot))
        nekmin = libphoebe.roche_contact_neck_min(np.pi / 2., q, d,
                                                  pot)['xmin']
        logger.debug(
            "libphoebe.roche_contact_partial_area_volume(nekmin={}, q={}, d={}, pot={}, compno={})"
            .format(nekmin, q, d, pot, compno - 1))
        volume_equiv = libphoebe.roche_contact_partial_area_volume(
            nekmin, q, d, pot, compno - 1)['lvolume']
        # returns normalized vequiv, should multiply by sma back for requiv in SI
        return sma * (3. / 4 * 1. / np.pi * volume_equiv)**(1. / 3)
    except:
        # replace this with actual check in the beginning or before function call
        raise ValueError(
            'potential probably out of bounds for contact envelope')
Example #2
0
def test_roche_semidetached(plot=False):
  
  #print "roche semi-detached"
  
  q = 1
  F = 1
  d = 1
  
  r_crit = libphoebe.roche_critical_potential(q, F, d, L1 = True, L2 = False, L3 = False)
  
  Omega0 = r_crit["L1"]
  choice = 0
   
  # determine area and volume 
  r_av = libphoebe.roche_area_volume(q, F, d, Omega0, choice, larea=True, lvolume=True)

  #print r_av
    
  # calculate delta
  ntriangles=1000
  delta = np.sqrt(r_av["larea"]/(np.sqrt(3)*ntriangles/4))
  
  max_triangles = int(1.5*ntriangles)
  
  # generate mesh  
  r_mesh = libphoebe.roche_marching_mesh(q, F, d, Omega0, delta, choice, max_triangles, 
                            vertices=True, vnormals=True, triangles=True,
                            tnormals=True, areas=True, area=True, volume=True, full=True)  
  
  # check the number of triagles of the mesh
  #print len(r_mesh["triangles"])
  assert(0.75*ntriangles < len(r_mesh["triangles"]) < 1.35*ntriangles)
  
  # check is the vertices are really on isosurface
  #print np.max(np.abs([potential_roche(r, q, F, d) - Omega0 for r in r_mesh["vertices"]]))
  assert(np.max(np.abs([potential_roche(r, q, F, d) - Omega0 for r in r_mesh["vertices"]])) < 1e-12)
  
  # check the area -0.00524575234831
  #print (r_mesh["area"]-r_av["larea"])/r_av["larea"]
  assert (np.abs(r_mesh["area"]-r_av["larea"])/r_av["larea"] < 1e-2)
  
  # check the volume -0.00985875277254
  #print (r_mesh["volume"]- r_av["lvolume"])/r_av["lvolume"]
  assert (np.abs(r_mesh["volume"]- r_av["lvolume"])/r_av["lvolume"] < 2e-2)
Example #3
0
def potential_contact_L23(q, **kwargs):
    """
    """
    crit_pots = libphoebe.roche_critical_potential(q, 1., 1.)
    return max(crit_pots['L2'], crit_pots['L3'])
Example #4
0
def potential_contact_L1(q, **kwargs):
    """
    """
    crit_pots = libphoebe.roche_critical_potential(q, 1., 1.)
    return crit_pots['L1']