def exponential(data, precision):
    independent_variable = dimension(data, 1)
    dependent_variable = dimension(data, 2)
    independent_matrix = []
    dependent_matrix = []
    for i in range(len(data)):
        independent_matrix.append([independent_variable[i], 1])
        dependent_matrix.append([log(dependent_variable[i])])
    solution = solve(independent_matrix, dependent_matrix, precision)
    constants = [exp(solution[1]), exp(solution[0])]
    coefficients = [
        rounding(constants[0], precision),
        rounding(constants[1], precision)
    ]
    equation = exponential_equation(*coefficients)
    derivative = exponential_derivative(*coefficients)
    integral = exponential_integral(*coefficients)['evaluation']
    first_derivative = derivative['first']['evaluation']
    second_derivative = derivative['second']['evaluation']
    points = key_points('exponential', solution, equation, first_derivative,
                        second_derivative, precision)
    five_numbers = five_number_summary(independent_variable, precision)
    min_value = five_numbers['minimum']
    max_value = five_numbers['maximum']
    q1 = five_numbers['q1']
    q3 = five_numbers['q3']
    accumulated_range = accumulation(integral, min_value, max_value, precision)
    accumulated_iqr = accumulation(integral, q1, q3, precision)
    averages_range = average_values('exponential', equation, integral,
                                    min_value, max_value, coefficients,
                                    precision)
    averages_iqr = average_values('exponential', equation, integral, q1, q3,
                                  coefficients, precision)
    predicted = []
    for i in range(len(data)):
        predicted.append(equation(independent_variable[i]))
    accuracy = correlation(dependent_variable, predicted, precision)
    evaluations = {
        'equation': equation,
        'derivative': first_derivative,
        'integral': integral
    }
    points = {
        'roots': points['roots'],
        'maxima': points['maxima'],
        'minima': points['minima'],
        'inflections': points['inflections']
    }
    accumulations = {'range': accumulated_range, 'iqr': accumulated_iqr}
    averages = {'range': averages_range, 'iqr': averages_iqr}
    result = {
        'constants': coefficients,
        'evaluations': evaluations,
        'points': points,
        'accumulations': accumulations,
        'averages': averages,
        'correlation': accuracy
    }
    return result
Example #2
0
def logarithmic(data, precision):
    independent_variable = dimension(data, 1)
    dependent_variable = dimension(data, 2)
    independent_matrix = []
    dependent_matrix = column(dependent_variable)
    for i in range(len(data)):
        independent_matrix.append([log(independent_variable[i]), 1])
    solution = solve(independent_matrix, dependent_matrix, precision)
    equation = logarithmic_equation(*solution)
    derivative = logarithmic_derivative(*solution)
    integral = logarithmic_integral(*solution)['evaluation']
    first_derivative = derivative['first']['evaluation']
    second_derivative = derivative['second']['evaluation']
    points = key_points('logarithmic', solution, equation, first_derivative, second_derivative, precision)
    five_numbers = five_number_summary(independent_variable, precision)
    min_value = five_numbers['minimum']
    max_value = five_numbers['maximum']
    q1 = five_numbers['q1']
    q3 = five_numbers['q3']
    accumulated_range = accumulation(integral, min_value, max_value, precision)
    accumulated_iqr = accumulation(integral, q1, q3, precision)
    averages_range = average_values('logarithmic', equation, integral, min_value, max_value, solution, precision)
    averages_iqr = average_values('logarithmic', equation, integral, q1, q3, solution, precision)
    predicted = []
    for i in range(len(data)):
        predicted.append(equation(independent_variable[i]))
    accuracy = correlation(dependent_variable, predicted, precision)
    evaluations = {
        'equation': equation,
        'derivative': first_derivative,
        'integral': integral
    }
    points = {
        'roots': points['roots'],
        'maxima': points['maxima'],
        'minima': points['minima'],
        'inflections': points['inflections']
    }
    accumulations = {
        'range': accumulated_range,
        'iqr': accumulated_iqr
    }
    averages = {
        'range': averages_range,
        'iqr': averages_iqr
    }
    result = {
        'constants': solution,
        'evaluations': evaluations,
        'points': points,
        'accumulations': accumulations,
        'averages': averages,
        'correlation': accuracy
    }
    return result
Example #3
0
def sinusoidal(data, precision):
    independent_variable = dimension(data, 1)
    dependent_variable = dimension(data, 2)
    dependent_max = max(dependent_variable)
    dependent_min = min(dependent_variable)
    dependent_range = dependent_max - dependent_min
    solution = []

    def sinusoidal_fit(variable, first_constant, second_constant,
                       third_constant, fourth_constant):
        evaluation = first_constant * sin(
            second_constant * (variable - third_constant)) + fourth_constant
        return evaluation

    parameters, covariance = curve_fit(sinusoidal_fit,
                                       independent_variable,
                                       dependent_variable,
                                       bounds=[(-1 * dependent_range, -inf,
                                                -inf, dependent_min),
                                               (dependent_range, inf, inf,
                                                dependent_max)])
    solution = list(parameters)
    constants = []
    for number in solution:
        constants.append(rounding(number, precision))
    equation = sinusoidal_equation(*solution)
    derivative = sinusoidal_derivative(*solution)
    integral = sinusoidal_integral(*solution)['evaluation']
    first_derivative = derivative['first']['evaluation']
    second_derivative = derivative['second']['evaluation']
    points = key_points('sinusoidal', solution, equation, first_derivative,
                        second_derivative, precision)
    five_numbers = five_number_summary(independent_variable, precision)
    min_value = five_numbers['minimum']
    max_value = five_numbers['maximum']
    q1 = five_numbers['q1']
    q3 = five_numbers['q3']
    accumulated_range = accumulation(integral, min_value, max_value, precision)
    accumulated_iqr = accumulation(integral, q1, q3, precision)
    averages_range = average_values('sinusoidal', equation, integral,
                                    min_value, max_value, solution, precision)
    averages_iqr = average_values('sinusoidal', equation, integral, q1, q3,
                                  solution, precision)
    predicted = []
    for i in range(len(data)):
        predicted.append(equation(independent_variable[i]))
    accuracy = correlation(dependent_variable, predicted, precision)
    evaluations = {
        'equation': equation,
        'derivative': first_derivative,
        'integral': integral
    }
    points = {
        'roots': points['roots'],
        'maxima': points['maxima'],
        'minima': points['minima'],
        'inflections': points['inflections']
    }
    accumulations = {'range': accumulated_range, 'iqr': accumulated_iqr}
    averages = {'range': averages_range, 'iqr': averages_iqr}
    result = {
        'constants': constants,
        'evaluations': evaluations,
        'points': points,
        'accumulations': accumulations,
        'averages': averages,
        'correlation': accuracy
    }
    return result
Example #4
0
def logistic(data, precision):
    independent_variable = dimension(data, 1)
    dependent_variable = dimension(data, 2)
    halved_data = halve_dimension(data, 1)
    dependent_lower = dimension(halved_data['lower'], 2)
    dependent_upper = dimension(halved_data['upper'], 2)
    mean_lower = mean(dependent_lower)
    mean_upper = mean(dependent_upper)
    dependent_max = max(dependent_variable)
    dependent_min = min(dependent_variable)
    dependent_range = dependent_max - dependent_min
    solution = []

    def logistic_fit(variable, first_constant, second_constant,
                     third_constant):
        evaluation = first_constant / (1 + exp(-1 * second_constant *
                                               (variable - third_constant)))
        return evaluation

    if mean_upper >= mean_lower:
        parameters, covariance = curve_fit(
            logistic_fit,
            independent_variable,
            dependent_variable,
            bounds=[(dependent_max - dependent_range, 0, -inf),
                    (dependent_max + dependent_range, inf, inf)])
        solution = list(parameters)
    else:
        parameters, covariance = curve_fit(
            logistic_fit,
            independent_variable,
            dependent_variable,
            bounds=[(dependent_max - dependent_range, -inf, -inf),
                    (dependent_max + dependent_range, 0, inf)])
        solution = list(parameters)
    constants = []
    for number in solution:
        constants.append(rounding(number, precision))
    equation = logistic_equation(*solution)
    derivative = logistic_derivative(*solution)
    integral = logistic_integral(*solution)['evaluation']
    first_derivative = derivative['first']['evaluation']
    second_derivative = derivative['second']['evaluation']
    points = key_points('logistic', solution, equation, first_derivative,
                        second_derivative, precision)
    five_numbers = five_number_summary(independent_variable, precision)
    min_value = five_numbers['minimum']
    max_value = five_numbers['maximum']
    q1 = five_numbers['q1']
    q3 = five_numbers['q3']
    accumulated_range = accumulation(integral, min_value, max_value, precision)
    accumulated_iqr = accumulation(integral, q1, q3, precision)
    averages_range = average_values('logistic', equation, integral, min_value,
                                    max_value, solution, precision)
    averages_iqr = average_values('logistic', equation, integral, q1, q3,
                                  solution, precision)
    predicted = []
    for i in range(len(data)):
        predicted.append(equation(independent_variable[i]))
    accuracy = correlation(dependent_variable, predicted, precision)
    evaluations = {
        'equation': equation,
        'derivative': first_derivative,
        'integral': integral
    }
    points = {
        'roots': points['roots'],
        'maxima': points['maxima'],
        'minima': points['minima'],
        'inflections': points['inflections']
    }
    accumulations = {'range': accumulated_range, 'iqr': accumulated_iqr}
    averages = {'range': averages_range, 'iqr': averages_iqr}
    result = {
        'constants': constants,
        'evaluations': evaluations,
        'points': points,
        'accumulations': accumulations,
        'averages': averages,
        'correlation': accuracy
    }
    return result