Example #1
0
def tree_dmrg_ipeps_kagome_gs(para=None, A=None):
    from library.PEPSClass import TreePepsIdmrgKagome as Peps
    is_print = True

    t_start = time.time()
    info = dict()
    if is_print:
        print('Start tree-DMRG on iPEPS kagome (Husimi) calculation')
    if para is None:
        para = pm.generate_parameters_tree_ipeps_kagome()
        para = pm.make_para_consistent_tree_ipeps_kagome(para)

    if A is None:
        A = Peps(para['chi'], para['spin'])

    ob = dict()
    e1 = 0
    de = 1
    A.update_ort_tensor_kagome()
    A.update_bath_onsite_kagome(para['j1'], para['j2'], para['hx'], para['hz'])
    A.update_effective_ops_kagome()

    # sweep
    for t in range(0, para['sweep_time']):
        A.update_central_tensor_kagome(para['tau'], para['j1'], para['j2'],
                                       para['hx'], para['hz'])

        if t % para['dt_ob'] == 0:
            A.rho_from_central_tensor_kagome()
            ob['eb'], ob['mag'], ob['energy_site'], ob['ent'] = A.observation_kagome(
                para['j1'], para['j2'], para['hx'], para['hz'])
            if is_print:
                print('At the %g-th sweep: Eb = ' % t + str(e1))
            de = sum(abs(ob['eb'] - e1)) / ob['eb'].__len__()
            if de > para['break_tol']:
                e1 = ob['eb']
            elif is_print:
                print('Converged with de = %g' % de)
                break
        if t == para['sweep_time']:
            print('Not sufficiently converged with de = %g' % de)

        A.update_ort_tensor_kagome()
        A.update_bath_onsite_kagome(para['j1'], para['j2'], para['hx'], para['hz'])
        A.update_effective_ops_kagome()
    info['t_cost'] = time.time() - t_start
    print('Energy per site = %g' % ob['energy_site'])
    print('x-magnetization = ' + str(ob['mag']['x']))
    print('z-magnetization = ' + str(ob['mag']['z']))
    print('Entanglement = ' + str(ob['ent']))
    print('Total time cost: %g' % info['t_cost'])
    return A, ob, info
Example #2
0
 def __init__(self, para=Parameters.gtn(), debug_mode=False, device='cpu'):
     # Initialize Parameters
     Programclass.Program.__init__(self, device=device, dtype=para['dtype'])
     MLclass.MachineLearning.__init__(self, para, debug_mode)
     MPSclass.MPS.__init__(self)
     self.initialize_parameters_gtn()
     self.name_md5_generate()
     self.debug_mode = debug_mode
     # Initialize MPS and update info
     if not debug_mode:
         self.load_gtn()
     # if not exist saved mps gtn model,then initialize
     if len(self.tensor_data) == 0:
         self.initialize_dataset()
         # Initialize info
         self.generate_tensor_info()
         self.generate_update_info()
         self.initialize_mps_gtn()
     if not self.tensor_data[0].device == self.device:
         for ii in range(len(self.tensor_data)):
             self.tensor_data[ii] = torch.tensor(self.tensor_data[ii],
                                                 device=self.device)
         if device == 'cuda': torch.cuda.empty_cache()
     # Environment Preparation
     self.tensor_input = tuple()
     self.environment_left = tuple()
     self.environment_right = tuple()
     self.environment_zoom = tuple()
Example #3
0
def decision_mps(para=None):
    if para is None:
        para = pm.parameters_decision_mps()
    a = TNmachineLearning.DecisionTensorNetwork(
        para['dataset'],
        2,
        para['chi'],
        'mps',
        para['classes'],
        para['numbers'],
        if_reducing_samples=para['if_reducing_samples'])
    a.images2vecs_test_samples(para['classes'])
    print(a.vLabel)
    for n in range(0, a.length):
        bf.print_sep()
        print('Calculating the %i-th tensor' % n)
        a.update_tensor_decision_mps_svd(n)
        # a.update_tensor_decision_mps_svd_threshold_algo(n)
        # a.update_tensor_decision_mps_gradient_algo(n)
        a.update_v_ctr_train(n)
        a.calculate_intermediate_accuracy_train(n)
        if a.remaining_samples_train.__len__() == 0:
            print('All samples are classified correctly. Training stopped.')
            break
        print('The current accuracy = %g' % a.intermediate_accuracy_train[n])
        print('Entanglement: ' + str(a.lm[n].reshape(1, -1)))
        if para['if_reducing_samples']:
            print('Number of remaining samples: ' +
                  str(a.remaining_samples_train.__len__()))
Example #4
0
 def __init__(self, para=Parameters.ml(), debug_mode=False):
     # initialize parameters
     self.para = copy.deepcopy(para)
     self.images_data = dict()
     self.index = dict()
     self.labels_data = dict()
     self.update_info = dict()
     self.data_info = dict()
     self.tmp = {}
     self.generative_model = ['GTN', 'GTN_Net']
     self.discriminative_model = ['DTNC']
def gcmpm_one_class(para=None):
    if para is None:
        para = pm.parameters_gcmpm_one_class()
    para['save_exp'] = save_exp_gcmpm_one_class(para)
    if para['parallel'] is True:
        par_pool = para['n_nodes']
    else:
        par_pool = None
    if para['if_load'] and os.path.isfile(para['save_exp']):
        a = bf.load_pr(os.path.join(para['data_path'], para['save_exp']), 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'], para['chi'], para['dataset'],
                                                 par_pool=par_pool)
    a.images2vecs([para['class']], [100])
    a.initialize_virtual_vecs_train()
    a.update_virtual_vecs_train('all', 'all', 'both')
    a.mps.correct_orthogonal_center(0, normalize=True)
    a.mps.mps[0] /= np.linalg.norm(a.mps.mps[0].reshape(-1, ))
    mps0 = a.mps.mps.copy()
    for t in range(0, para['sweep_time']):
        # from left to right
        if para['if_print_detail']:
            print('At the ' + str(t) + '-th sweep, from left to right')
        for nt in range(0, a.length):
            a.update_tensor_gradient(nt, para['step'])
            if nt != a.length-1:
                a.update_virtual_vecs_train('all', nt, 'left')
        # from left to right
        print('At the ' + str(t) + '-th sweep, from right to left')
        for nt in range(a.length-1, -1, -1):
            a.update_tensor_gradient(nt, para['step'])
            if nt != 0:
                a.update_virtual_vecs_train('all', nt, 'right')
        if t > para['check_time0'] and ((t+1) % para['check_time'] == 0
                                        or t+1 == para['sweep_time']):
            fid = ln_fidelity_per_site(mps0, a.mps.mps)
            if fid < (para['step'] * para['ratio_step_tol']):
                print('After ' + str(t+1) + ' sweeps: fid = %g' % fid)
                para['step'] *= para['step_ratio']
            elif t+1 == para['sweep_time']:
                print('After all ' + str(t+1) + ' sweeps finished, fid = %g. '
                                                'Consider to increase the sweep times.' % fid)
            else:
                print('After ' + str(t+1) + ' sweeps, fid = %g.' % fid)
                mps0 = a.mps.mps.copy()
            if para['step'] < para['step_min']:
                print('Now step = ' + str(para['step']) + ' is sufficiently small. Break the loop')
                break
            else:
                print('Now step = ' + str(para['step']))
    if para['if_save']:
        save_pr(para['data_path'], para['save_exp'], [a, para], ['a', 'para'])
    return a, para
Example #6
0
 def __init__(self, para=Parameters.gtnc(), debug_mode=False, device='cpu'):
     # Initialize Parameters
     Programclass.Program.__init__(self, device=device, dtype=para['dtype'])
     MLclass.MachineLearning.__init__(self, para, debug_mode)
     self.debug_mode = debug_mode
     self.initialize_parameters_gtnc()
     self.name_md5_generate()
     self.inner_product = dict()
     self.data_mapped = dict()
     self.right_label = dict()
     self.accuracy = dict()
     self.test_info = dict()
     self.is_all_gtn_trained = False
     if not self.debug_mode:
         self.load_accuracy()
Example #7
0
def gtnc(para_tot=None):
    print('Preparing parameters')
    if para_tot is None:
        para_tot = pm.parameters_gcmpm()
    n_class = len(para_tot['classes'])
    paras = bf.empty_list(n_class)
    for n in range(0, n_class):
        paras[n] = copy.deepcopy(para_tot)
        paras[n]['class'] = int(para_tot['classes'][n])
        paras[n]['chi'] = para_tot['chi'][n]
        paras[n]['theta'] = para_tot['theta']
        paras[n]['save_exp'] = save_exp_gtn_one_class(paras[n])
    classifiers = bf.empty_list(n_class)
    for n in range(0, n_class):
        print_dict(paras[n])
        data = para_tot['data_path'] + paras[n]['save_exp']
        if para_tot['if_load'] and os.path.isfile(data):
            print('The classifier already exists. Load directly')
            classifiers[n] = load_pr(data, 'a')
        else:
            print('Training the MPS of ' + str(para_tot['classes'][n]))
            classifiers[n] = gtn_one_class(paras[n])[0]
            # if para_tot['if_save']:
            #     save_pr('../data_tnml/gcmpm/', paras[n]['save_exp'],
            #             [classifiers[n]], ['classifier'])
        # classifiers[n].mps.check_orthogonality_by_tensors(tol=1e-12)
    # ==================== Testing accuracy ====================
    print('Calculating the testing accuracy')
    b = TNmachineLearning.MachineLearningFeatureMap(para_tot['d'])
    b.load_data(data_path='..\\..\\..\\MNIST\\',
                file_sample='t10k-images.idx3-ubyte',
                file_label='t10k-labels.idx1-ubyte',
                is_normalize=True)
    b.select_samples(para_tot['classes'])
    if classifiers[0].is_dct:
        b.dct(shift=para_tot['shift'], factor=para_tot['factor'])
    b.images2vecs(para_tot['theta'] * np.pi / 2)
    fid = bf.empty_list(n_class)
    for n in range(0, n_class):
        fid[n] = b.compute_fidelities(classifiers[n].mps.mps)
    max_fid = np.argmin(np.hstack(fid), axis=1)
    predict = np.zeros(max_fid.shape, dtype=int)
    for n in range(0, n_class):
        predict += (max_fid == n) * int(para_tot['classes'][n])
    # plot(predict)
    # plot(b.labels)
    accuracy = np.sum(predict == b.labels, dtype=float) / b.numVecSample
    print(accuracy)
Example #8
0
 def __init__(self,
              para=Parameters.gtn_net(),
              debug_mode=False,
              device='cuda'):
     # Initialize Parameters
     self.para = para
     Programclass.Program.__init__(self,
                                   device=device,
                                   dtype=para['dtype'],
                                   debug_mode=debug_mode)
     MPSclass.MPS.__init__(self)
     MLclass.MachineLearning.__init__(self,
                                      self.para,
                                      debug_mode=debug_mode)
     tc.nn.Module.__init__(self)
     self.initialize_parameters_gtn_net()
     self.name_md5_generate()
     self.debug_mode = debug_mode
     self.update_info = dict()
     self.data_info = dict()
     # Initialize MPS and update info
     self.weight = None
     self.tensor_shape = None
     if not debug_mode:
         self.load_weight()
     if self.weight is None:
         self.initialize_dataset()
         self.generate_tensor_info()
         self.generate_update_info()
         self.initialize_mps_gtn_net()
         self.initialize_tensor_shape()
         self.weight = tc.nn.Parameter(
             tc.empty((self.tensor_info['n_length'],
                       self.tensor_info['tensor_initialize_bond'],
                       self.tensor_info['physical_bond'],
                       self.tensor_info['tensor_initialize_bond']),
                      device=self.device,
                      dtype=self.dtype))
         self.initialize_weight()
     self.tensor_input = None
     self.opt = None
     self.initialize_opt()
     self.fun = tc.nn.LogSoftmax(dim=0)
def gcmpm(para_tot=None):
    print('Preparing parameters')
    if para_tot is None:
        para_tot = pm.parameters_gcmpm()
    n_class = len(para_tot['classes'])
    paras = bf.empty_list(n_class)
    for n in range(0, n_class):
        paras[n] = para_tot.copy()
        paras[n]['class'] = para_tot['classes'][n]
        paras[n]['chi'] = para_tot['chi'][n]
        paras[n]['save_exp'] = save_exp_gcmpm_one_class(paras[n])
    classifiers = bf.empty_list(n_class)
    for n in range(0, n_class):
        data = '../data_tnml/gcmpm/' + paras[n]['save_exp']
        if para_tot['if_load'] and os.path.isfile(data):
            print('The classifier already exists. Load directly')
            classifiers[n] = load_pr(data, 'classifier')
        else:
            print('Training the MPS of ' + str(para_tot['classes'][n]))
            classifiers[n] = gcmpm_one_class(paras[n])[0]
            if para_tot['if_save']:
                save_pr('../data_tnml/gcmpm/', paras[n]['save_exp'],
                        [classifiers[n]], ['classifier'])
    # Testing accuracy
    print('Calculating the testing accuracy')
    labels = para_tot['classes']
    b = TNmachineLearning.MachineLearningFeatureMap('MNIST', para_tot['d'],
                                                    file_sample='t10k-images.idx3-ubyte',
                                                    file_label='t10k-labels.idx1-ubyte')
    b.images2vecs(para_tot['classes'], ['all', 'all'])
    fid = np.zeros((n_class, ))
    num_wrong = 0
    for ni in range(0, b.numVecSample):
        for n in range(0, n_class):
            fid[n] = b.fidelity_mps_image(classifiers[n].mps.mps, ni)
        n_max = int(np.argmax(fid))
        if labels[n_max] != b.LabelNow[ni]:
            num_wrong += 1
    accuracy = num_wrong/b.numVecSample
    print(accuracy)
Example #10
0
from library import MPSMLclass
from library import Parameters

para = Parameters.gtn()
GTN = MPSMLclass.GTN(para=para,
                     device='cpu')  # change device='cuda' to use GPU
GTN.start_learning()
Example #11
0
def deep_dmrg_infinite_size(para=None):
    from library.MPSClass import MpsDeepInfinite as Minf
    is_print = True

    t_start = time.time()
    info = dict()
    if is_print:
        print('Start deep DMRG calculation')
    if para is None:
        para = pm.generate_parameters_deep_mps_infinite()

    hamilt = hamiltonian_heisenberg(para['spin'], para['jxy'], para['jxy'],
                                    para['jz'], -para['hx'] / 2,
                                    -para['hz'] / 2)
    tensor = hamiltonian2cell_tensor(hamilt, para['tau'])
    A = Minf(para['form'],
             para['d'],
             para['chi'],
             para['d'],
             para['chib0'],
             para['chib'],
             para['is_symme_env'],
             n_site=para['n_site'],
             is_debug=is_debug)
    # use standard DMRG to get the GS MPS
    A, ob0, info0 = dmrg_infinite_size(para, A, hamilt)
    # get uMPO from the MPS
    A.get_unitary_mpo_from_mps()

    if A.n_site == 1:
        e0 = 0
        e1 = 1
    else:
        e0 = np.zeros((1, 3))
        e1 = np.ones((1, 3))
    de = 1
    for t in range(0, para['sweep_time']):
        A.update_ort_tensor_dmps('left')
        A.update_left_env_dmps_simple(tensor)
        if not A.is_symme_env:
            A.update_ort_tensor_dmps('right')
            A.update_right_env_dmps_simple(tensor)
        A.update_central_tensor_dmps(tensor)
        if t % para['dt_ob'] == 0:
            A.rho_from_central_tensor_dmps()
            e1 = A.observe_energy(hamilt)
            if is_print:
                print('At the %g-th sweep: Eb = ' % t + str(e1))
            de = np.sum(abs(e0 - e1))
            if de > para['break_tol']:
                e0 = e1
            elif is_print:
                print('Converged with de = %g' % de)
                break
        if t == para['sweep_time']:
            print('Not sufficiently converged with de = %g' % de)
    ob = {'eb': e1}
    info['t_cost'] = time.time() - t_start
    if is_print:
        print('Total time cost: %g' % info['t_cost'])
    return A, ob, info, ob0, info0
Example #12
0
from algorithms.DMRG_anyH import dmrg_finite_size
from library import Parameters as Pm


para = Pm.generate_parameters_dmrg('husimi')
para['spin'] = 'half'
para['depth'] = 2
# The interactions are assumed to be uniform; if not, use parameter_dmrg_arbitrary instead
para['jxy'] = 1
para['jz'] = 1
para['hx'] = 0
para['hz'] = 0
para['chi'] = 32  # Virtual bond dimension cut-off
para['eigWay'] = 1
para = Pm.make_consistent_parameter_dmrg(para)

ob, A, info1, para1 = dmrg_finite_size(para)
print(ob['e_per_site'])
# -*- encoding: utf-8 -*-
from library import MPSMLclass
from library import Parameters
import matplotlib.pyplot as plt
import numpy as np
import json
import copy

para = Parameters.gtnc()
# get the relation between cutting dimention and testing accuracy
batch_bond = []
batch_acc = []
saved_para = dict()
for i in range(1, 9):
    bond = 2**i  # get the cutting bond
    para['virtual_bond_limitation'] = bond
    print('The current cutting bond is %d' % bond)
    A = MPSMLclass.GTNC(para=para,
                        device='cpu')  # change device='cuda' to use GPU
    A.training_gtn()  # if the GTN are not trained
    acc = A.calculate_accuracy('test')
    print('Bond {0} acc is {1}'.format(bond, acc))
    batch_bond.append(bond)
    # para[''] = acc
    batch_acc.append(acc)
    counterpart_para = copy.deepcopy(para)
    for item in counterpart_para.keys():
        counterpart_para[item] = str(counterpart_para[item])
    counterpart_para['Accuracy'] = acc
    saved_para["bond" + str(bond)] = counterpart_para
Example #14
0
from library import TNMLclass
from library import Parameters as Pa

pa = Pa.gtn_net()
A = TNMLclass.GTN_Net(para=pa, device='cuda:0', debug_mode=False)
A.start_learning()
Example #15
0
def labeled_gtn(para):
    if para is None:
        para = pm.parameters_labeled_gtn()
    para['save_exp'] = save_exp_labeled_gtn(para)
    if para['parallel'] is True:
        par_pool = para['n_nodes']
    else:
        par_pool = None

    # Preparing testing dataset
    b = TNmachineLearning.MachineLearningFeatureMap(
        para['d'],
        file_sample='t10k-images.idx3-ubyte',
        file_label='t10k-labels.idx1-ubyte')
    b.load_data()
    b.select_samples(para['classes'])
    b.add_labels_to_images()
    b.images2vecs(para['theta'])

    data_file = os.path.join(para['data_path'], para['save_exp'])
    if para['if_load'] and os.path.isfile(data_file):
        print('Data exist. Load directly.')
        a = bf.load_pr(data_file, 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'],
                                                 para['chi'],
                                                 para['dataset'],
                                                 par_pool=par_pool)
        a.load_data()
        a.select_samples(para['classes'])
        a.add_labels_to_images()
        a.images2vecs(para['theta'] * np.pi / 2)
        a.initial_mps()
        a.mps.correct_orthogonal_center(0, normalize=True)
        a.initialize_virtual_vecs_train()
        a.update_virtual_vecs_train_all_tensors('both')
        accuracy0 = 0
        for t in range(0, para['sweep_time']):
            # from left to right
            for nt in range(0, a.length):
                a.update_tensor_gradient(nt, para['step'])
                if nt != a.length - 1:
                    a.update_virtual_vecs_train(nt, 'left')
            # from left to right
            for nt in range(a.length - 1, -1, -1):
                a.update_tensor_gradient(nt, para['step'])
                if nt != 0:
                    a.update_virtual_vecs_train(nt, 'right')
            if t > para['check_time0'] and ((t + 1) % para['check_time'] == 0
                                            or t + 1 == para['sweep_time']):
                b.input_mps(a.mps)
                accuracy = b.calculate_accuracy()
                print('After the ' + str(t) +
                      '-th sweep, the testing accuracy = ' + str(accuracy))
                if abs(accuracy - accuracy0) < (para['step'] *
                                                para['ratio_step_tol']):
                    para['step'] *= para['step_ratio']
                    accuracy0 = accuracy
                    print('Converged. Reduce the gradient step to ' +
                          str(para['step']))
                elif t + 1 == para['sweep_time']:
                    print('After all ' + str(t + 1) +
                          ' sweeps finished, not converged. '
                          'Consider to increase the sweep times.')
                else:
                    accuracy0 = accuracy
                if para['step'] < para['step_min']:
                    print('Now step = ' + str(para['step']) +
                          ' is sufficiently small. Break the loop')
                    break
                else:
                    print('Now step = ' + str(para['step']))
        a.clear_before_save()
        if para['if_save']:
            save_pr(para['data_path'], para['save_exp'], [a, para],
                    ['a', 'para'])
    accuracy = b.calculate_accuracy()
    print('The final testing accuracy = ' + str(accuracy))

    return a, para
Example #16
0
from library import TNMLclass
from library import Parameters as Pa

pa = Pa.gtn()
A = TNMLclass.GTN(para=pa, device='cuda:0', debug_mode=False)
A.start_learning()
Example #17
0
def gtn_one_class(para=None, images=None, labels=None):
    if 'to_black_and_white' not in para:
        para['to_black_and_white'] = False
    if para is None:
        para = pm.parameters_gtn_one_class()
    para['save_exp'] = save_exp_gtn_one_class(para)
    if para['if_load'] and os.path.isfile(
            os.path.join(para['data_path'], para['save_exp'])):
        a = bf.load_pr(os.path.join(para['data_path'], para['save_exp']), 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'], para['chi'],
                                                 para['dataset'])
        if para['dataset'] is 'custom':
            a.input_data(copy.deepcopy(images), copy.deepcopy(labels))
        else:
            a.load_data()
        if a.is_there_labels:
            a.select_samples([para['class']])
        if para['to_black_and_white']:
            a.to_black_and_white()
        if para['dct'] is True:
            a.dct(shift=para['shift'], factor=para['factor'])
        a.images2vecs(theta_max=para['theta'] * np.pi / 2)
        a.initial_mps(center=0, ini_way='1')
        a.initialize_virtual_vecs_train()
        a.mps.correct_orthogonal_center(0)
        a.update_tensor_gradient(0, para['step'])
        nll0 = a.compute_nll()
        step = copy.deepcopy(para['step'])
        print('Iniitially, NLL = ' + str(nll0))
        for t in range(0, para['sweep_time']):
            # from left to right
            if para['if_print_detail']:
                print('At the ' + str(t + 1) + '-th sweep, from left to right')
                t0 = time.time()
                tt0 = time.clock()
            for nt in range(0, a.length):
                a.mps.correct_orthogonal_center(nt)
                if nt != 0:
                    a.update_virtual_vecs_train(nt - 1, 'left')
                a.update_tensor_gradient(nt, step)
            # from right to left
            if para['if_print_detail']:
                print('At the ' + str(t + 1) + '-th sweep, from right to left')
            for nt in range(a.length - 1, -1, -1):
                a.mps.correct_orthogonal_center(nt)
                if nt != a.length - 1:
                    a.update_virtual_vecs_train(nt + 1, 'right')
                a.update_tensor_gradient(nt, step)
            if para['if_print_detail']:
                print('Wall time cost for one loop: %s' % (time.time() - t0))
                print('CPU time cost for one loop: %s' % (time.clock() - tt0))

            if t > (para['check_time0'] - 2) and (
                (t + 1) % para['check_time'] == 0
                    or t + 1 == para['sweep_time']):
                nll = a.compute_nll()
                print('NLL = ' + str(nll))
                # fid = fidelity_per_site(mps0, a.mps.mps)
                fid = abs(nll - nll0) / nll0
                if fid < (step * para['step_ratio']):
                    print('After ' + str(t + 1) + ' sweeps: fid = %g' % fid)
                    step *= para['step_ratio']
                    # mps0 = copy.deepcopy(a.mps.mps)
                    nll0 = nll
                elif t + 1 == para['sweep_time']:
                    print('After all ' + str(t + 1) +
                          ' sweeps finished, fid = %g. '
                          'Consider to increase the sweep times.' % fid)
                else:
                    print('After ' + str(t + 1) + ' sweeps, fid = %g.' % fid)
                    # mps0 = copy.deepcopy(a.mps.mps)
                    nll0 = nll
                if step < para['step_min']:
                    print('Now step = ' + str(step) +
                          ' is sufficiently small. Break the loop')
                    break
                else:
                    print('Now step = ' + str(step))
        a.clear_before_save()
        if para['if_save']:
            save_pr(para['data_path'], para['save_exp'], [a, para],
                    ['a', 'para'])
    return a, para
Example #18
0
def super_orthogonalization_honeycomb(para=None):
    if para is None:
        para = pm.generate_parameters_so_honeycomb()
    peps = PepsInfinite(para['lattice'], para['chi'], para['state_type'],
                        ini_way=para['ini_way'], is_debug=para['is_debug'])
    h = hm.hamiltonian_heisenberg(para['spin'], para['jxy'], para['jxy'], para['jz'],
                                  para['hx'], para['hz'])
    op = hm.spin_operators(para['spin'])
    ob = dict()
    if para['state_type'] is 'pure':
        ob['mx'] = np.zeros((para['tau'].__len__(), peps.nTensor))
        ob['mz'] = np.zeros((para['tau'].__len__(), peps.nTensor))
        ob['eb'] = np.zeros((para['tau'].__len__(), peps.nLm))
    else:
        ob['mx'] = np.zeros((para['beta'].__len__(), peps.nTensor))
        ob['mz'] = np.zeros((para['beta'].__len__(), peps.nTensor))
        ob['eb'] = np.zeros((para['beta'].__len__(), peps.nLm))
        ob['e_site'] = np.zeros((para['beta'].__len__(), ))
    if para['state_type'] is 'pure':
        for n_tau in range(0, para['tau'].__len__()):
            gate_t = hm.hamiltonian2gate_tensors(h, para['tau'][n_tau], 'exp')
            eb0 = np.ones((peps.nLm, ))
            eb = np.zeros((peps.nLm, ))
            for t in range(1, round(para['beta']/para['tau'][n_tau]) + 1):
                for n_lm in range(0, peps.nLm):
                    peps.evolve_once_tensor_and_lm(gate_t[0], gate_t[1], n_lm)
                    if para['so_time'] == 0:
                        peps.super_orthogonalization(n_lm)
                    else:
                        peps.super_orthogonalization('all', it_time=para['so_time'])
                    # if is_debug:
                    #     peps.check_super_orthogonality()
                if t % para['dt_ob'] == 0:
                    rho2 = peps.rho_two_body_simple('all')
                    for nr in range(0, peps.nLm):
                        eb[nr] = rho2[nr].reshape(1, -1).dot(h.reshape(-1, 1))
                    if para['if_print']:
                        print('For tau = %g, t = %g: ' % (para['tau'][n_tau], t) +
                              'bond energy  = ' + str(eb))
                    err = np.linalg.norm(eb0 - eb)
                    if err < para['tol']:
                        ob['eb'][n_tau, :] = eb.copy()
                        rho1 = peps.rho_one_body_simple('all')
                        for nr in range(0, peps.nTensor):
                            ob['mx'][n_tau, nr] = rho1[nr].reshape(1, -1).dot(op['sx'].reshape(-1, 1))
                            ob['mz'][n_tau, nr] = rho1[nr].reshape(1, -1).dot(op['sz'].reshape(-1, 1))
                        if para['if_print']:
                            print('Converged with error = %g' % err)
                        break
                    else:
                        eb0 = eb.copy()
    elif para['state_type'] is 'mixed':
        gate_t = hm.hamiltonian2gate_tensors(h, para['tau'], 'exp')
        beta_now = 0
        t_ob = 0
        for t in range(0, int(1e-6 + para['beta'][-1]/para['tau'])):
            for n_lm in range(0, peps.nLm):
                peps.evolve_once_tensor_and_lm(gate_t[0], gate_t[1], n_lm)
                if para['so_time'] == 0:
                    peps.super_orthogonalization(n_lm)
                else:
                    peps.super_orthogonalization('all', it_time=para['so_time'])
                # if is_debug:
                #     peps.check_super_orthogonality()
            beta_now += para['tau']
            if abs(para['beta'][t_ob] - beta_now) < 1e-8:
                rho2 = peps.rho_two_body_simple('all')
                for nr in range(0, peps.nLm):
                    ob['eb'][t_ob, nr] = rho2[nr].reshape(1, -1).dot(h.reshape(-1, 1))
                ob['e_site'][t_ob] = np.sum(ob['eb'][t_ob, :]) / 2
                if para['if_print']:
                    print('For beta = %g: ' % beta_now + 'energy per site  = ' + str(ob['e_site'][t_ob]))
                rho1 = peps.rho_one_body_simple('all')
                for nr in range(0, peps.nTensor):
                    ob['mx'][t_ob, nr] = rho1[nr].reshape(1, -1).dot(op['sx'].reshape(-1, 1))
                    ob['mz'][t_ob, nr] = rho1[nr].reshape(1, -1).dot(op['sz'].reshape(-1, 1))
                t_ob += 1
    para['data_exp'] = 'HoneycombSO_' + para['state_type'] + '_j(%g,%g)_h(%g,%g)_chi%d' % \
                       (para['jxy'], para['jz'], para['hx'], para['hz'],
                        para['chi'])
    save(para['data_path'], para['data_exp'], [peps, para, ob], ['peps', 'para', 'ob'])
Example #19
0
def dmrg_infinite_size(para=None, A=None, hamilt=None):
    from library.MPSClass import MpsInfinite as Minf
    is_print = True

    t_start = time.time()
    info = dict()
    if is_print:
        print('Start ' + str(para['n_site']) + '-site iDMRG calculation')
    if para is None:
        para = pm.generate_parameters_infinite_dmrg_sawtooth()
    if hamilt is None:
        hamilt = hamiltonian_heisenberg(para['spin'], para['jxy'], para['jxy'],
                                        para['jz'], para['hx'] / 2,
                                        para['hz'] / 2)
    if A is None:
        if para['dmrg_type'] is 'mpo':
            d = para['d']**para['n_site']
        else:
            d = para['d']
        A = Minf(para['form'],
                 d,
                 para['chi'],
                 para['d']**para['n_site'],
                 n_site=para['n_site'],
                 is_symme_env=para['is_symme_env'],
                 dmrg_type=para['dmrg_type'],
                 hamilt_index=para['hamilt_index'])
    if A.dmrg_type is 'mpo':
        tensor = hamiltonian2cell_tensor(hamilt, para['tau'])
    else:
        tensor = np.zeros(0)
    if A.n_site == 1:
        # singe-site iDMRG
        e0 = 0
        e1 = 1
    else:
        # double-site iDMRG (including White's way)
        e0 = np.zeros((1, 3))
        e1 = np.ones((1, 3))
    de = 1
    if A.is_symme_env:
        A.update_ort_tensor_mps('left')
        if A.dmrg_type is 'white':
            A.update_bath_onsite()
            A.update_effective_ops()
        else:
            A.update_left_env(tensor)
    else:
        A.update_ort_tensor_mps('both')
        A.update_left_env(tensor)
        A.update_right_env(tensor)
    # iDMRG sweep
    for t in range(0, para['sweep_time']):
        if A.dmrg_type is 'mpo':
            A.update_central_tensor(tensor)
        else:
            A.update_central_tensor((para['tau'], 'full'))

        if t % para['dt_ob'] == 0:
            A.rho_from_central_tensor()
            e1 = A.observe_energy(hamilt)
            if is_print:
                print('At the %g-th sweep: Eb = ' % t + str(e1))
            de = np.sum(abs(e0 - e1)) / A.n_site
            if de > para['break_tol']:
                e0 = e1
            elif is_print:
                print('Converged with de = %g' % de)
                break
        if t == para['sweep_time']:
            print('Not sufficiently converged with de = %g' % de)

        if A.is_symme_env:
            A.update_ort_tensor_mps('left')
            if A.dmrg_type is 'mpo':
                A.update_left_env(tensor)
            else:
                A.update_bath_onsite()
                A.update_effective_ops()
        else:
            A.update_ort_tensor_mps('both')
            A.update_left_env(tensor)
            A.update_right_env(tensor)
    ob = {'eb': e1}
    info['t_cost'] = time.time() - t_start
    if is_print:
        print('Total time cost: %g' % info['t_cost'])
    return A, ob, info
Example #20
0
# num_samples = 100
# h1 = np.random.rand(num_samples, 1) * delta
# h2 = np.random.rand(num_samples, 1) * delta + (0.82 - delta)
# h = np.vstack((h1, h2))

gap = [0.5]
for delta in gap:
    num_samples = 100
    h1 = np.random.rand(num_samples, 1) * delta
    h2 = np.random.rand(num_samples, 1) * delta + (1 - delta)
    h = np.vstack((h1, h2))

    j = [1]
    tol = 1e-4  # to judge if the state has two-fold degeneracy
    lattice = 'chain'
    para = pm.generate_parameters_dmrg(lattice)
    para['spin'] = 'one'
    para['bound_cond'] = 'periodic'
    para['chi'] = 128
    para['l'] = 12
    para['jxy'] = 1
    para['hx'] = 0
    model = 'Spin_' + para['spin'] + '_' + lattice
    # para['data_path'] = '..\\dataQubism\\states_' + model + '\\'
    para['data_path'] = 'E:\\tmpData\\states_' + model + '\\'
    para[
        'image_path'] = '..\\dataQubism\\images_' + model + '\\train 0-' + str(
            delta)
    mkdir(para['data_path'])
    mkdir(para['image_path'])
Example #21
0
def dmrg_finite_size(para=None):
    from library.MPSClass import MpsOpenBoundaryClass as Mob
    t_start = time.time()
    info = dict()
    print('Preparing the parameters and MPS')
    if para is None:
        para = pm.generate_parameters_dmrg()
    # Initialize MPS
    is_parallel = para['isParallel']
    if is_parallel or para['isParallelEnvLMR']:
        par_pool = dict()
        par_pool['n'] = n_nodes
        par_pool['pool'] = ThreadPool(n_nodes)
    else:
        par_pool = None

    A = Mob(length=para['l'],
            d=para['d'],
            chi=para['chi'],
            way='qr',
            ini_way='r',
            operators=para['op'],
            debug=is_debug,
            is_parallel=para['isParallel'],
            par_pool=par_pool,
            is_save_op=para['is_save_op'],
            eig_way=para['eigWay'],
            is_env_parallel_lmr=para['isParallelEnvLMR'])
    A.correct_orthogonal_center(para['ob_position'])
    print('Starting to sweep ...')
    e0_per_site = 0
    info['convergence'] = 1
    ob = dict()
    for t in range(0, para['sweep_time']):
        if_ob = ((t + 1) % para['dt_ob'] == 0) or t == (para['sweep_time'] - 1)
        if if_ob:
            print('In the %d-th round of sweep ...' % (t + 1))
        for n in range(para['ob_position'] + 1, para['l']):
            if para['if_print_detail']:
                print('update the %d-th tensor from left to right...' % n)
            A.update_tensor_eigs(n,
                                 para['index1'],
                                 para['index2'],
                                 para['coeff1'],
                                 para['coeff2'],
                                 para['tau'],
                                 para['is_real'],
                                 tol=para['eigs_tol'])
        for n in range(para['l'] - 2, -1, -1):
            if para['if_print_detail']:
                print('update the %d-th tensor from right to left...' % n)
            A.update_tensor_eigs(n,
                                 para['index1'],
                                 para['index2'],
                                 para['coeff1'],
                                 para['coeff2'],
                                 para['tau'],
                                 para['is_real'],
                                 tol=para['eigs_tol'])
        for n in range(1, para['ob_position']):
            if para['if_print_detail']:
                print('update the %d-th tensor from left to right...' % n)
            A.update_tensor_eigs(n,
                                 para['index1'],
                                 para['index2'],
                                 para['coeff1'],
                                 para['coeff2'],
                                 para['tau'],
                                 para['is_real'],
                                 tol=para['eigs_tol'])
        if if_ob:
            ob['eb_full'] = A.observe_bond_energy(para['index2'],
                                                  para['coeff2'])
            ob['mx'] = A.observe_magnetization(1)
            ob['mz'] = A.observe_magnetization(3)
            ob['e_per_site'] = (sum(ob['eb_full']) - para['hx'] * sum(ob['mx'])
                                - para['hz'] * sum(ob['mz'])) / A.length
            # if para['lattice'] in ('square', 'chain'):
            #     ob['e_per_site'] = (sum(ob['eb_full']) - para['hx']*sum(ob['mx']) - para['hz'] *
            #                         sum(ob['mz']))/A.length
            # else:
            #     ob['e_per_site'] = sum(ob['eb_full'])
            #     for n in range(0, para['l']):
            #         ob['e_per_site'] += para['hx'][n] * ob['mx'][n]
            #         ob['e_per_site'] += para['hz'][n] * ob['mz'][n]
            #     ob['e_per_site'] /= A.length
            info['convergence'] = abs(ob['e_per_site'] - e0_per_site)
            if info['convergence'] < para['break_tol']:
                print(
                    'Converged at the %d-th sweep with error = %g of energy per site.'
                    % (t + 1, info['convergence']))
                break
            else:
                print('Convergence error of energy per site = %g' %
                      info['convergence'])
                e0_per_site = ob['e_per_site']
        if t == para['sweep_time'] - 1 and info['convergence'] > para[
                'break_tol']:
            print('Not converged with error = %g of eb per bond' %
                  info['convergence'])
            print('Consider to increase para[\'sweep_time\']')
    ob['eb'] = get_bond_energies(ob['eb_full'], para['positions_h2'],
                                 para['index2'])
    A.calculate_entanglement_spectrum()
    A.calculate_entanglement_entropy()
    ob['corr_x'] = A.observe_correlators_from_middle(1, 1)
    ob['corr_z'] = A.observe_correlators_from_middle(3, 3)
    info['t_cost'] = time.time() - t_start
    print('Simulation finished in %g seconds' % info['t_cost'])
    A.clean_to_save()
    if A._is_parallel:
        par_pool['pool'].close()
    return ob, A, info, para
Example #22
0
def dmrg_infinite_size_sawtooth(para=None, A=None):
    from library.MPSClass import MpsInfiniteSawtooth as Minf
    is_print = True

    t_start = time.time()
    info = dict()
    if is_print:
        print('Start ' + str(para['n_site']) +
              '-site iDMRG (sawtooth) calculation')
    if para is None:
        para = pm.generate_parameters_infinite_dmrg_sawtooth()
        para = pm.make_para_consistent_idmrg_sawtooth(para)

    if A is None:
        d = para['d']
        A = Minf(para['form'],
                 d,
                 para['chi'],
                 para['d']**para['n_site'],
                 n_site=para['n_site'],
                 is_symme_env=para['is_symme_env'],
                 dmrg_type=para['dmrg_type'],
                 spin=para['spin'])

    ob = dict()
    e1 = 0
    de = 1
    A.update_ort_tensor_mps_sawtooth()
    A.update_bath_onsite_sawtooth(para['j1'], para['j2'], para['hx'],
                                  para['hz'])
    A.update_effective_ops_sawtooth()

    # iDMRG sweep
    for t in range(0, para['sweep_time']):
        A.update_central_tensor_sawtooth(para['tau'], para['j1'], para['j2'],
                                         para['hx'], para['hz'])

        if t % para['dt_ob'] == 0:
            A.rho_from_central_tensor_sawtooth()
            ob['eb'], ob['mag'], ob['energy_site'], ob[
                'ent'] = A.observation_sawtooth(para['j1'], para['j2'],
                                                para['hx'], para['hz'])
            if is_print:
                print('At the %g-th sweep: Eb = ' % t + str(e1))
            de = sum(abs(ob['eb'] - e1)) / ob['eb'].__len__()
            if de > para['break_tol']:
                e1 = ob['eb']
            elif is_print:
                print('Converged with de = %g' % de)
                break
        if t == para['sweep_time']:
            print('Not sufficiently converged with de = %g' % de)

        A.update_ort_tensor_mps_sawtooth()
        A.update_bath_onsite_sawtooth(para['j1'], para['j2'], para['hx'],
                                      para['hz'])
        A.update_effective_ops_sawtooth()
    info['t_cost'] = time.time() - t_start
    print('Energy per site = %g' % ob['energy_site'])
    print('x-magnetization = ' + str(ob['mag']['x']))
    print('z-magnetization = ' + str(ob['mag']['z']))
    print('Entanglement = ' + str(ob['ent']))
    print('Total time cost: %g' % info['t_cost'])
    return A, ob, info
Example #23
0
from algorithms.DMRG_anyH import dmrg_finite_size
from library import Parameters as Pm
import numpy as np
from os import path
from library.BasicFunctions import load_pr, save_pr, plot, output_txt, get_size
from algorithms.DeepMPSfinite import parameters_dmps, deep_mps_qubit, \
    fidelities_to_original_state, act_umpo_on_mps
from library.TensorBasicModule import open_mps_product_state_spin_up
"""
NOTE: for Linux, add the fold "T-Nalg" in your system path
"""
para_dmrg = Pm.generate_parameters_dmrg(
    'chain')  # set default parameters of DMRG
para_dmrg['spin'] = 'half'  # spin-half model
para_dmrg['bound_cond'] = 'open'  # open boundary condition
para_dmrg['chi'] = 48  # dimension cut-off of DMRG
para_dmrg['l'] = 48  # system size
para_dmrg['jxy'] = 0  # coupling constant - jx and jy in the Heisenberg model
para_dmrg['jz'] = 1  # coupling constant - jz in the Heisenberg model
para_dmrg['hx'] = 0.3  # magnetic field in the x direction
para_dmrg['hz'] = 0  # magnetic field in the z direction
para_dmrg = Pm.make_consistent_parameter_dmrg(
    para_dmrg)  # check consistency of the parameters

para_dmps = parameters_dmps()  # set default parameters of MPS encoding
para_dmps['num_layers'] = 9  # number of the MPU layers in the circuit
para_dmps['chi_overlap'] = 256  # dimension cut-off of the disentangled MPS

# calculate the ground state by DMRG
pre_fix = path.basename(__file__)[:-3] + '_'
if path.isfile(path.join(para_dmrg['data_path'],