data_info, embed_size=16, n_epochs=2, lr=1e-4, lr_decay=False, reg=None, batch_size=2048, num_neg=1, use_bn=False, dropout_rate=None, hidden_units="128,64,32", tf_sess_config=None) deepfm.fit(train_data, verbose=2, shuffle=True, eval_data=eval_data, metrics=[ "loss", "balanced_accuracy", "roc_auc", "pr_auc", "precision", "recall", "map", "ndcg" ]) print("prediction: ", deepfm.predict(user=1, item=2333)) print("recommendation: ", deepfm.recommend_user(user=1, n_rec=7)) reset_state("AutoInt") autoint = AutoInt("ranking", data_info, embed_size=16, n_epochs=2, att_embed_size=(8, 8, 8), num_heads=4, use_residual=False, lr=1e-3,
n_epochs=2, lr=1e-4, lr_decay=False, reg=None, batch_size=2048, num_neg=1, use_bn=False, dropout_rate=None, hidden_units="128,64,32", tf_sess_config=None) deepfm.fit(train_data, verbose=2, shuffle=True, eval_data=test_data, metrics=[ "loss", "balanced_accuracy", "roc_auc", "pr_auc", "precision", "recall", "map", "ndcg" ], eval_batch_size=8192, k=10, sample_user_num=2048) data_info.save(path="model_path") deepfm.save(path="model_path", model_name="deepfm_model", manual=True, inference_only=True) # =========================== load model ============================== print("\n", "=" * 50, " after load model ", "=" * 50) tf.reset_default_graph()
deepfm = DeepFM("rating", data_info, embed_size=16, n_epochs=2, lr=1e-4, lr_decay=False, reg=None, batch_size=2048, num_neg=1, use_bn=False, dropout_rate=None, hidden_units="128,64,32", tf_sess_config=None) deepfm.fit(train_data, verbose=2, shuffle=True, eval_data=eval_data, metrics=["rmse", "mae", "r2"]) print("prediction: ", deepfm.predict(user=1, item=2333)) print("recommendation: ", deepfm.recommend_user(user=1, n_rec=7)) reset_state("AutoInt") autoint = AutoInt("rating", data_info, embed_size=16, n_epochs=2, att_embed_size=(8, 8, 8), num_heads=4, use_residual=False, lr=1e-3, lr_decay=False,