Example #1
0
def quantise_notes(notes):
    '''Quantises an array of note values in Hertz to those in a 12 tone equal temperment tuning.

    Parameters
    ----------
    notes : array-like or tuple
        Either a list of note values, or a tuple of (note start times, note lengths, note values).


    Returns
    -------
    notes : array
        List of quantised notes, matching the format of `notes`.


    Raises
    ------
    ValueError
        If `notes` is not in a valid format.

    '''

    if len(np.shape(notes)) == 2:
        notes = np.asarray(notes)
        notes[2] = midi_to_hz(np.round(hz_to_midi(notes[2])))
        return notes
    elif len(np.shape(notes)) == 1:
        return midi_to_hz(np.round(hz_to_midi(notes)))
    else:
        raise ValueError(
            '`notes` must be one or two dimenstional array-like lists.')
Example #2
0
def GetChromaFromPianoroll(arr_pianoroll,bass=False):
    chroma_filter = cq_to_chroma(n_input=128,fmin=midi_to_hz(0))
    chroma = np.dot(chroma_filter,arr_pianoroll.T).T.astype("float32")
    chroma[chroma>0] = 1
    if not bass:
        return chroma
    bass_chroma = np.zeros(shape=chroma.shape,dtype="float32")
    for t in range(bass_chroma.shape[0]):
        notes = arr_pianoroll[t,:]
        if np.sum(notes)>0:
            bass = np.min(np.where(notes>0)[0])
            bass_chroma[i,bass%12] = 1
    return np.concatenate([bass_chroma,chroma],axis=1)
Example #3
0
def inference(feature, model, timestep=128, batch_size=10, feature_num=384):
    assert len(feature.shape) == 2
    # Padding
    total_samples = len(feature)
    pad_bottom = (feature_num - feature.shape[1]) // 2
    pad_top = feature_num - feature.shape[1] - pad_bottom
    pad_len = timestep - 1
    feature = np.pad(feature, ((pad_len, pad_len), (pad_bottom, pad_top)))

    # Prepare for prediction
    output = np.zeros(feature.shape + (2, ))
    total_batches = int(np.ceil(total_samples / batch_size))
    last_batch_idx = len(feature) - pad_len
    for bidx in range(total_batches):
        print(f"batch: {bidx+1}/{total_batches}", end="\r")

        # Collect batch feature
        start_idx = bidx * batch_size
        end_idx = min(start_idx + batch_size, last_batch_idx)
        batch = np.array([
            feature[idx:idx + timestep] for idx in range(start_idx, end_idx)
        ])  # noqa: E226
        batch = np.expand_dims(batch, axis=3)

        # Predict contour
        batch_pred = model.predict(batch)
        batch_pred = 1 / (1 + np.exp(-expit(batch_pred)))

        # Add the batch results to the output container.
        for idx, pred in enumerate(batch_pred):
            slice_start = start_idx + idx
            slice_end = slice_start + timestep
            output[slice_start:slice_end] += pred
    output = output[pad_len:-pad_len, pad_bottom:-pad_top, 1]  # Remove padding

    # Filter values
    avg_max_val = np.mean(np.max(output, axis=1))
    output = np.where(output > avg_max_val, output, 0)

    # Generate final output F0
    f0 = []  # pylint: disable=invalid-name
    for pitches in output:
        if np.sum(pitches) > 0:
            pidx = np.argmax(pitches)
            f0.append(midi_to_hz(pidx / 4 + LOWEST_MIDI_NOTE))
        else:
            f0.append(0)

    return np.array(f0)
Example #4
0
def GetLabelarrFromPianoroll(arr_pianoroll):
    chroma_filter = cq_to_chroma(n_input = 128, fmin = midi_to_hz(0)).T
    chroma = np.dot(arr_pianoroll,chroma_filter).astype("int32")
    
    lab = np.zeros(chroma.shape[0],dtype="int32")
    for i in range(chroma.shape[0]):
        c = chroma[i,:]
        note = arr_pianoroll[i,:]
        bass = np.where(note>0)[0]
        if bass.size>0:
            c[np.min(bass)%12] = 20     #Force bass note to remain in template
        c_argsort = np.argsort(c,kind="mergesort")
        c[c_argsort[:9]] = 0
        lab[i] = _getlabel(c)
            
    return lab
Example #5
0
def GetTemplateChromaFromPianoroll(arr_pianoroll,bass=False):
    chroma_filter = cq_to_chroma(n_input = 128, fmin = midi_to_hz(0)).T
    chroma = np.dot(arr_pianoroll,chroma_filter).astype("int32")
    chroma_template = np.zeros(chroma.shape,dtype="int32")
    bass_template = np.zeros(chroma.shape,dtype="int32")
    for i in range(chroma.shape[0]):
        c = chroma[i,:]
        note = arr_pianoroll[i,:]
        bass = np.where(note>0)[0]
        if bass.size>0:
            if not bass:
                c[np.min(bass)%12] = 20     #Force bass note to remain in template
            bass_template[i,np.min(bass)] = 1
        c_argsort = np.argsort(c,kind="mergesort")
        c[c_argsort[:9]] = 0
        c[c>0] = 1
        chroma_template[i,:] = c
    if bass:
        return np.concatenate([chroma_template,bass_template],axis=1)
    else:        
        return chroma_template
Example #6
0
def GetTargetsFromPianoroll(arr_pianoroll):
    chroma_filter = cq_to_chroma(n_input=128,fmin=midi_to_hz(0))
    T = arr_pianoroll.shape[0]
    t_bass = np.zeros(T,dtype="int32")
    t_top = np.zeros(T,dtype="int32")
    for t in range(T):
        sum_notes = np.sum(arr_pianoroll[t,:])
        if sum_notes==0:
            continue
        notes = np.where(arr_pianoroll[t,:]>0)[0]
        bassnote = np.min(notes)
        topnote = np.max(notes)
        arr_pianoroll[t,bassnote]=0
        arr_pianoroll[t,topnote]=0
        t_bass[t]=bassnote%12
        t_top[t]=topnote%12
    
    chroma = np.dot(chroma_filter,arr_pianoroll.T).T.astype("float32")
    feature = np.zeros((T,12),dtype="float32")
    feature[chroma>=1] = 1.0

    return t_bass,feature,t_top    
Example #7
0
def GetConvnetTargetFromPianoroll(arr_pianoroll):
    chroma_filter = cq_to_chroma(n_input=128,fmin=midi_to_hz(0))
    T = arr_pianoroll.shape[0]
    bass_chroma = np.zeros((T,12),dtype="float32")
    top_chroma = np.zeros((T,12),dtype="float32")
    for t in range(T):
        sum_notes = np.sum(arr_pianoroll[t,:])
        if sum_notes==0:
            continue
        notes = np.where(arr_pianoroll[t,:]>0)[0]
        bassnote = np.min(notes)
        topnote = np.max(notes)
        arr_pianoroll[t,bassnote]=0
        arr_pianoroll[t,topnote]=0
        bass_chroma[t,bassnote%12]=1
        top_chroma[t,topnote%12]=1
    
    chroma = np.dot(chroma_filter,arr_pianoroll.T).T
    feature = np.zeros((T,12),dtype="float32")
    #feature = normalize(chroma,axis=1,norm=np.inf).astype("float32")
    feature[chroma>=1] = 1.0
    feature = np.concatenate([bass_chroma,feature,top_chroma],axis=1)
    return feature