def __init__(self, state_space_parameters, epsilon, state=None, qstore=None, replay_dictionary=pd.DataFrame(columns=['net', 'accuracy_best_val', 'accuracy_last_val', 'accuracy_best_test', 'accuracy_last_test', 'ix_q_value_update', 'epsilon'])): self.state_list = [] self.state_space_parameters = state_space_parameters # Class that will expand states for us self.enum = se.StateEnumerator(state_space_parameters) self.stringutils = StateStringUtils(state_space_parameters) self.model=self._build_model() # Starting State self.state = se.State('start', 0, 1, 0, 0, state_space_parameters.image_size, 0, 0) if not state else state self.bucketed_state = self.enum.bucket_state(self.state) # Cached Q-Values -- used for q learning update and transition self.qstore = QValues() if not qstore else qstore self.replay_dictionary = replay_dictionary self.epsilon = epsilon # epsilon: parameter for epsilon greedy strategy
def __init__(self): self.start_state = se.State('start', 0, 1, 0, 0, ssp.image_size, 0, 0, 0, 0) self.q_path = 'needed_for_testing/q_values.csv' self.se = se.StateEnumerator(ssp)
def __init__(self): self.se = se.StateEnumerator(ssp)
def __init__(self, state_space_parameters): self.image_size = state_space_parameters.image_size self.output_number = state_space_parameters.output_states self.enum = se.StateEnumerator(state_space_parameters)