Example #1
0
 def testForward(self):
     batch_size = 1
     height, width = 224, 224
     with self.test_session() as sess:
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_16(inputs)
         sess.run(tf.global_variables_initializer())
         output = sess.run(logits)
         self.assertTrue(output.any())
Example #2
0
 def testModelVariables(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         vgg.vgg_16(inputs, num_classes)
         expected_names = [
             'vgg_16/conv1/conv1_1/weights',
             'vgg_16/conv1/conv1_1/biases',
             'vgg_16/conv1/conv1_2/weights',
             'vgg_16/conv1/conv1_2/biases',
             'vgg_16/conv2/conv2_1/weights',
             'vgg_16/conv2/conv2_1/biases',
             'vgg_16/conv2/conv2_2/weights',
             'vgg_16/conv2/conv2_2/biases',
             'vgg_16/conv3/conv3_1/weights',
             'vgg_16/conv3/conv3_1/biases',
             'vgg_16/conv3/conv3_2/weights',
             'vgg_16/conv3/conv3_2/biases',
             'vgg_16/conv3/conv3_3/weights',
             'vgg_16/conv3/conv3_3/biases',
             'vgg_16/conv4/conv4_1/weights',
             'vgg_16/conv4/conv4_1/biases',
             'vgg_16/conv4/conv4_2/weights',
             'vgg_16/conv4/conv4_2/biases',
             'vgg_16/conv4/conv4_3/weights',
             'vgg_16/conv4/conv4_3/biases',
             'vgg_16/conv5/conv5_1/weights',
             'vgg_16/conv5/conv5_1/biases',
             'vgg_16/conv5/conv5_2/weights',
             'vgg_16/conv5/conv5_2/biases',
             'vgg_16/conv5/conv5_3/weights',
             'vgg_16/conv5/conv5_3/biases',
             'vgg_16/fc6/weights',
             'vgg_16/fc6/biases',
             'vgg_16/fc7/weights',
             'vgg_16/fc7/biases',
             'vgg_16/fc8/weights',
             'vgg_16/fc8/biases',
         ]
         model_variables = [v.op.name for v in slim.get_model_variables()]
         self.assertSetEqual(set(model_variables), set(expected_names))
Example #3
0
 def testFullyConvolutional(self):
     batch_size = 1
     height, width = 256, 256
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_16(inputs, num_classes, spatial_squeeze=False)
         self.assertEquals(logits.op.name, 'vgg_16/fc8/BiasAdd')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, 2, 2, num_classes])
Example #4
0
 def testBuild(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_16(inputs, num_classes)
         self.assertEquals(logits.op.name, 'vgg_16/fc8/squeezed')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
Example #5
0
 def testEvaluation(self):
     batch_size = 2
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         eval_inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_16(eval_inputs, is_training=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
         predictions = tf.argmax(logits, 1)
         self.assertListEqual(predictions.get_shape().as_list(),
                              [batch_size])
Example #6
0
 def testTrainEvalWithReuse(self):
     train_batch_size = 2
     eval_batch_size = 1
     train_height, train_width = 224, 224
     eval_height, eval_width = 256, 256
     num_classes = 1000
     with self.test_session():
         train_inputs = tf.random_uniform(
             (train_batch_size, train_height, train_width, 3))
         logits, _ = vgg.vgg_16(train_inputs)
         self.assertListEqual(logits.get_shape().as_list(),
                              [train_batch_size, num_classes])
         tf.get_variable_scope().reuse_variables()
         eval_inputs = tf.random_uniform(
             (eval_batch_size, eval_height, eval_width, 3))
         logits, _ = vgg.vgg_16(eval_inputs,
                                is_training=False,
                                spatial_squeeze=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [eval_batch_size, 2, 2, num_classes])
         logits = tf.reduce_mean(logits, [1, 2])
         predictions = tf.argmax(logits, 1)
         self.assertEquals(predictions.get_shape().as_list(),
                           [eval_batch_size])
Example #7
0
 def testEndPoints(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         _, end_points = vgg.vgg_16(inputs, num_classes)
         expected_names = [
             'vgg_16/conv1/conv1_1', 'vgg_16/conv1/conv1_2', 'vgg_16/pool1',
             'vgg_16/conv2/conv2_1', 'vgg_16/conv2/conv2_2', 'vgg_16/pool2',
             'vgg_16/conv3/conv3_1', 'vgg_16/conv3/conv3_2',
             'vgg_16/conv3/conv3_3', 'vgg_16/pool3', 'vgg_16/conv4/conv4_1',
             'vgg_16/conv4/conv4_2', 'vgg_16/conv4/conv4_3', 'vgg_16/pool4',
             'vgg_16/conv5/conv5_1', 'vgg_16/conv5/conv5_2',
             'vgg_16/conv5/conv5_3', 'vgg_16/pool5', 'vgg_16/fc6',
             'vgg_16/fc7', 'vgg_16/fc8'
         ]
         self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #8
0
def get_network_byname(net_name,
                       inputs,
                       num_classes=None,
                       is_training=True,
                       global_pool=True,
                       output_stride=None,
                       spatial_squeeze=True):
    if net_name == 'resnet_v1_50':
        FLAGS = get_flags_byname(net_name)
        with slim.arg_scope(
                resnet_v1.resnet_arg_scope(weight_decay=FLAGS.weight_decay)):
            logits, end_points = resnet_v1.resnet_v1_50(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training,
                global_pool=global_pool,
                output_stride=output_stride,
                spatial_squeeze=spatial_squeeze)

        return logits, end_points
    if net_name == 'resnet_v1_101':
        FLAGS = get_flags_byname(net_name)
        with slim.arg_scope(
                resnet_v1.resnet_arg_scope(weight_decay=FLAGS.weight_decay)):
            logits, end_points = resnet_v1.resnet_v1_101(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training,
                global_pool=global_pool,
                output_stride=output_stride,
                spatial_squeeze=spatial_squeeze)
        return logits, end_points
    if net_name == 'pvanet':
        FLAGS = get_flags_byname(net_name)
        with slim.arg_scope(
                pvanet.pvanet_scope(
                    is_training=is_training,
                    weights_initializer=slim.xavier_initializer(),
                    batch_norm_param_initializer=None,
                    beta_initializer=tf.zeros_initializer(),
                    gamma_initializer=tf.ones_initializer(),
                    weight_decay=0.99)):
            logits, end_points = pvanet.pvanet(net=inputs,
                                               include_last_bn_relu=True)
        return logits, end_points

    if net_name == 'vgg_16':
        FLAGS = get_flags_byname(net_name)
        with slim.arg_scope(
                vgg.vgg_arg_scope(weight_decay=FLAGS.weight_decay)):
            logits, end_points = vgg.vgg_16(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training,
                dropout_keep_prob=0.5,
                spatial_squeeze=spatial_squeeze,
            )
        return logits, end_points
    # if net_name == 'inception_resnet_v2':
    #     FLAGS = get_flags_byname(net_name)
    #     with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(weight_decay=FLAGS.weight_decay)):
    #         logits, end_points = inception_resnet_v2.inception_resnet_v2(inputs=inputs,
    #                                         num_classes=num_classes,
    #                                         is_training=is_training,
    #                                         dropout_keep_prob=0.8,
    #                                         )
    #     return logits, end_points
    if net_name == 'inception_resnet':
        FLAGS = get_flags_byname(net_name)
        arg_sc = inception_resnet_v2.inception_resnet_v2_arg_scope(
            weight_decay=FLAGS.weight_decay)
        with slim.arg_scope(arg_sc):
            logits, end_points = inception_resnet_v2.inception_resnet_v2(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training)

        return logits, end_points

    if net_name == 'inception_v4':
        FLAGS = get_flags_byname(net_name)
        arg_sc = inception_v4.inception_v4_arg_scope(
            weight_decay=FLAGS.weight_decay)
        with slim.arg_scope(arg_sc):
            logits, end_points = inception_v4.inception_v4(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training)
        return logits, end_points

    if net_name == 'mobilenet_224':
        FLAGS = get_flags_byname(net_name)
        with slim.arg_scope(
                mobilenet_v1.mobilenet_v1_arg_scope(
                    weight_decay=FLAGS.weight_decay)):
            logits, end_points = mobilenet_v1.mobilenet_v1(
                inputs=inputs,
                num_classes=num_classes,
                is_training=is_training,
                spatial_squeeze=spatial_squeeze)
        return logits, end_points