def testForward(self): batch_size = 1 height, width = 224, 224 with self.test_session() as sess: inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any())
def testModelVariables(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) vgg.vgg_16(inputs, num_classes) expected_names = [ 'vgg_16/conv1/conv1_1/weights', 'vgg_16/conv1/conv1_1/biases', 'vgg_16/conv1/conv1_2/weights', 'vgg_16/conv1/conv1_2/biases', 'vgg_16/conv2/conv2_1/weights', 'vgg_16/conv2/conv2_1/biases', 'vgg_16/conv2/conv2_2/weights', 'vgg_16/conv2/conv2_2/biases', 'vgg_16/conv3/conv3_1/weights', 'vgg_16/conv3/conv3_1/biases', 'vgg_16/conv3/conv3_2/weights', 'vgg_16/conv3/conv3_2/biases', 'vgg_16/conv3/conv3_3/weights', 'vgg_16/conv3/conv3_3/biases', 'vgg_16/conv4/conv4_1/weights', 'vgg_16/conv4/conv4_1/biases', 'vgg_16/conv4/conv4_2/weights', 'vgg_16/conv4/conv4_2/biases', 'vgg_16/conv4/conv4_3/weights', 'vgg_16/conv4/conv4_3/biases', 'vgg_16/conv5/conv5_1/weights', 'vgg_16/conv5/conv5_1/biases', 'vgg_16/conv5/conv5_2/weights', 'vgg_16/conv5/conv5_2/biases', 'vgg_16/conv5/conv5_3/weights', 'vgg_16/conv5/conv5_3/biases', 'vgg_16/fc6/weights', 'vgg_16/fc6/biases', 'vgg_16/fc7/weights', 'vgg_16/fc7/biases', 'vgg_16/fc8/weights', 'vgg_16/fc8/biases', ] model_variables = [v.op.name for v in slim.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names))
def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_16/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_16/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.test_session(): eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_16(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_16(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_16(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_16(inputs, num_classes) expected_names = [ 'vgg_16/conv1/conv1_1', 'vgg_16/conv1/conv1_2', 'vgg_16/pool1', 'vgg_16/conv2/conv2_1', 'vgg_16/conv2/conv2_2', 'vgg_16/pool2', 'vgg_16/conv3/conv3_1', 'vgg_16/conv3/conv3_2', 'vgg_16/conv3/conv3_3', 'vgg_16/pool3', 'vgg_16/conv4/conv4_1', 'vgg_16/conv4/conv4_2', 'vgg_16/conv4/conv4_3', 'vgg_16/pool4', 'vgg_16/conv5/conv5_1', 'vgg_16/conv5/conv5_2', 'vgg_16/conv5/conv5_3', 'vgg_16/pool5', 'vgg_16/fc6', 'vgg_16/fc7', 'vgg_16/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
def get_network_byname(net_name, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True): if net_name == 'resnet_v1_50': FLAGS = get_flags_byname(net_name) with slim.arg_scope( resnet_v1.resnet_arg_scope(weight_decay=FLAGS.weight_decay)): logits, end_points = resnet_v1.resnet_v1_50( inputs=inputs, num_classes=num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=spatial_squeeze) return logits, end_points if net_name == 'resnet_v1_101': FLAGS = get_flags_byname(net_name) with slim.arg_scope( resnet_v1.resnet_arg_scope(weight_decay=FLAGS.weight_decay)): logits, end_points = resnet_v1.resnet_v1_101( inputs=inputs, num_classes=num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=spatial_squeeze) return logits, end_points if net_name == 'pvanet': FLAGS = get_flags_byname(net_name) with slim.arg_scope( pvanet.pvanet_scope( is_training=is_training, weights_initializer=slim.xavier_initializer(), batch_norm_param_initializer=None, beta_initializer=tf.zeros_initializer(), gamma_initializer=tf.ones_initializer(), weight_decay=0.99)): logits, end_points = pvanet.pvanet(net=inputs, include_last_bn_relu=True) return logits, end_points if net_name == 'vgg_16': FLAGS = get_flags_byname(net_name) with slim.arg_scope( vgg.vgg_arg_scope(weight_decay=FLAGS.weight_decay)): logits, end_points = vgg.vgg_16( inputs=inputs, num_classes=num_classes, is_training=is_training, dropout_keep_prob=0.5, spatial_squeeze=spatial_squeeze, ) return logits, end_points # if net_name == 'inception_resnet_v2': # FLAGS = get_flags_byname(net_name) # with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(weight_decay=FLAGS.weight_decay)): # logits, end_points = inception_resnet_v2.inception_resnet_v2(inputs=inputs, # num_classes=num_classes, # is_training=is_training, # dropout_keep_prob=0.8, # ) # return logits, end_points if net_name == 'inception_resnet': FLAGS = get_flags_byname(net_name) arg_sc = inception_resnet_v2.inception_resnet_v2_arg_scope( weight_decay=FLAGS.weight_decay) with slim.arg_scope(arg_sc): logits, end_points = inception_resnet_v2.inception_resnet_v2( inputs=inputs, num_classes=num_classes, is_training=is_training) return logits, end_points if net_name == 'inception_v4': FLAGS = get_flags_byname(net_name) arg_sc = inception_v4.inception_v4_arg_scope( weight_decay=FLAGS.weight_decay) with slim.arg_scope(arg_sc): logits, end_points = inception_v4.inception_v4( inputs=inputs, num_classes=num_classes, is_training=is_training) return logits, end_points if net_name == 'mobilenet_224': FLAGS = get_flags_byname(net_name) with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( weight_decay=FLAGS.weight_decay)): logits, end_points = mobilenet_v1.mobilenet_v1( inputs=inputs, num_classes=num_classes, is_training=is_training, spatial_squeeze=spatial_squeeze) return logits, end_points